Skip to content

Commit

Permalink
update news
Browse files Browse the repository at this point in the history
  • Loading branch information
ymcui committed Mar 30, 2022
1 parent e8e9c59 commit 0f5fb5d
Show file tree
Hide file tree
Showing 2 changed files with 27 additions and 26 deletions.
27 changes: 15 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,34 +10,37 @@
<img alt="GitHub" src="https://img.shields.io/github/license/ymcui/Chinese-BERT-wwm.svg?color=blue&style=flat-square">
</a>
</p>
在自然语言处理领域中预训练语言模型Pre-trained Language Models已成为非常重要的基础技术为了进一步促进中文信息处理的研究发展我们发布了基于全词遮罩Whole Word Masking技术的中文预训练模型BERT-wwm以及与此技术密切相关的模型BERT-wwm-extRoBERTa-wwm-extRoBERTa-wwm-ext-large, RBT3, RBTL3
在自然语言处理领域中预训练语言模型Pre-trained Language Models已成为非常重要的基础技术为了进一步促进中文信息处理的研究发展我们发布了基于全词掩码Whole Word Masking技术的中文预训练模型BERT-wwm以及与此技术密切相关的模型BERT-wwm-extRoBERTa-wwm-extRoBERTa-wwm-ext-large, RBT3, RBTL3等

**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**
Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
- **[Pre-Training with Whole Word Masking for Chinese BERT](https://ieeexplore.ieee.org/document/9599397)**
- *Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang*
- Published in *IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP)*

本项目基于谷歌官方BERThttps://github.com/google-research/bert

其他相关资源
----

[中文MacBERT](https://github.com/ymcui/MacBERT) | [中文ELECTRA](https://github.com/ymcui/Chinese-ELECTRA) | [中文XLNet](https://github.com/ymcui/Chinese-XLNet) | [知识蒸馏工具TextBrewer](https://github.com/airaria/TextBrewer) | [模型裁剪工具TextPruner](https://github.com/airaria/TextPruner)

查看更多哈工大讯飞联合实验室HFL发布的资源https://github.com/ymcui/HFL-Anthology

## 新闻
**2021/12/17 哈工大讯飞联合实验室推出模型裁剪工具包TextPruner查看https://github.com/airaria/TextPruner**
**2022/3/30 我们开源了一种新预训练模型PERT查看https://github.com/ymcui/PERT**

2021/12/17 哈工大讯飞联合实验室推出模型裁剪工具包TextPruner查看https://github.com/airaria/TextPruner

2021/10/24 哈工大讯飞联合实验室发布面向少数民族语言的预训练模型CINO查看https://github.com/ymcui/Chinese-Minority-PLM

2021/7/21 由哈工大SCIR多位学者撰写的[《自然语言处理基于预训练模型的方法》](https://item.jd.com/13344628.html)已出版欢迎大家选购

2021/1/27 所有模型已支持TensorFlow 2请通过transformers库进行调用或下载https://huggingface.co/hfl

<details>
<summary>历史新闻</summary>
2020/9/15 我们的论文["Revisiting Pre-Trained Models for Chinese Natural Language Processing"](https://arxiv.org/abs/2004.13922)[Findings of EMNLP](https://2020.emnlp.org)录用为长文

2020/8/27 哈工大讯飞联合实验室在通用自然语言理解评测GLUE中荣登榜首查看[GLUE榜单](https://gluebenchmark.com/leaderboard),[新闻](http://dwz.date/ckrD)。

<details>
<summary>历史新闻</summary>
2020/3/23 本目录发布的模型已接入[飞桨PaddleHub](https://github.com/PaddlePaddle/PaddleHub),查看[快速加载](#快速加载)

2020/3/11 为了更好地了解需求邀请您填写[调查问卷](https://wj.qq.com/s2/5637766/6281),以便为大家提供更好的资源
Expand Down Expand Up @@ -100,7 +103,7 @@ Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping
* **`BERT-large模型`**24-layer, 1024-hidden, 16-heads, 330M parameters
* **`BERT-base模型`**12-layer, 768-hidden, 12-heads, 110M parameters

**注意开源版本不包含MLM任务的权重如需做MLM任务请进行二次预训练**
**注意开源版本不包含MLM任务的权重如需做MLM任务请使用额外数据进行二次预训练和其他下游任务一样**

| 模型简称 | 语料 | Google下载 | 百度网盘下载 |
| :------- | :--------- | :---------: | :---------: |
Expand Down Expand Up @@ -471,8 +474,8 @@ A: 我们集成了RoBERTa和BERT-wwm的优点,对两者进行了一个自然


## 引用
如果本目录中的内容对你的研究工作有所帮助欢迎在论文中引用下述论文
- 首选https://ieeexplore.ieee.org/document/9599397
如果本项目中的资源或技术对你的研究工作有所帮助欢迎在论文中引用下述论文
- 首选期刊扩充版https://ieeexplore.ieee.org/document/9599397
```
@journal{cui-etal-2021-pretrain,
title={Pre-Training with Whole Word Masking for Chinese BERT},
Expand All @@ -484,7 +487,7 @@ A: 我们集成了RoBERTa和BERT-wwm的优点,对两者进行了一个自然
}
```

- 或者https://arxiv.org/abs/2004.13922
- 或者会议版本https://www.aclweb.org/anthology/2020.findings-emnlp.58
```
@inproceedings{cui-etal-2020-revisiting,
title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
Expand All @@ -506,7 +509,7 @@ A: 我们集成了RoBERTa和BERT-wwm的优点,对两者进行了一个自然


## 致谢
第一作者部分受到[**谷歌TensorFlow Research Cloud**](https://www.tensorflow.org/tfrc)计划资助
第一作者部分受到[**谷歌TPU Research Cloud**](https://www.tensorflow.org/tfrc)计划资助


## 免责声明
Expand Down
26 changes: 12 additions & 14 deletions README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,39 +3,37 @@
## Chinese BERT with Whole Word Masking
For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. Meanwhile, we also compare the state-of-the-art Chinese pre-trained models in depth, including [BERT](https://github.com/google-research/bert)、[ERNIE](https://github.com/PaddlePaddle/LARK/tree/develop/ERNIE)、[BERT-wwm](https://github.com/ymcui/Chinese-BERT-wwm).

**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**
Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
- **[Pre-Training with Whole Word Masking for Chinese BERT](https://ieeexplore.ieee.org/document/9599397)**
- Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang
- Published in *IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP)*

This repository is developed based onhttps://github.com/google-research/bert

You may also be interested in,
----

- Chinese MacBERT: https://github.com/ymcui/MacBERT
- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
- Model Pruning Toolkit - TextPruner: https://github.com/airaria/TextPruner
[Chinese MacBERT](https://github.com/ymcui/MacBERT) | [Chinese ELECTRA](https://github.com/ymcui/Chinese-ELECTRA) | [Chinese XLNet](https://github.com /ymcui/Chinese-XLNet) | [Chinese BERT](https://github.com/ymcui/Chinese-BERT-wwm) | [TextBrewer](https://github.com/airaria/TextBrewer) | [TextPruner](https://github.com/airaria/TextPruner)

More resources by HFL: https://github.com/ymcui/HFL-Anthology


## News
**2021/12/17 We release a model pruning toolkit - TextPruner, check https://github.com/airaria/TextPruner**
**2022/3/30 We release a new pre-trained model called PERT, check https://github.com/ymcui/PERT **

2021/12/17 We release a model pruning toolkit - TextPruner, check https://github.com/airaria/TextPruner

2021/1/27 All models support TensorFlow 2 now. Please use transformers library to access them or download from https://huggingface.co/hfl

2020/9/15 Our paper ["Revisiting Pre-Trained Models for Chinese Natural Language Processing"](https://arxiv.org/abs/2004.13922) is accepted to [Findings of EMNLP](https://2020.emnlp.org) as a long paper.

2020/8/27 We are happy to announce that our model is on top of GLUE benchmark, check [leaderboard](https://gluebenchmark.com/leaderboard).

<details>
<summary>Past News</summary>
2020/3/23 The models in this repository now can be easily accessed through [PaddleHub](https://github.com/PaddlePaddle/PaddleHub), check [Quick Load](#Quick-Load)

2020/2/26 We release a knowledge distillation toolkit [TextBrewer](https://github.com/airaria/TextBrewer)

2020/1/20 Happy Chinese New Year! We've released RBT3 and RBTL3 (3-layer RoBERTa-wwm-ext-base/large), check [Small Models](#Small-Models)

<details>
<summary>Past News</summary>
2019/12/19 The models in this repository now can be easily accessed through [Huggingface-Transformers](https://github.com/huggingface/transformers), check [Quick Load](#Quick-Load)

2019/10/14 We release `RoBERTa-wwm-ext-large`, check [Download](#Download)
Expand Down Expand Up @@ -439,7 +437,7 @@ A: integrate whole word masking (wwm) into RoBERTa model, specifically:

## Citation
If you find the technical report or resource is useful, please cite our work in your paper.
- Primary: https://ieeexplore.ieee.org/document/9599397
- Primary (Journal extension): https://ieeexplore.ieee.org/document/9599397
```
@journal{cui-etal-2021-pretrain,
title={Pre-Training with Whole Word Masking for Chinese BERT},
Expand All @@ -450,7 +448,7 @@ If you find the technical report or resource is useful, please cite our work in
doi={10.1109/TASLP.2021.3124365},
}
```
- Secondary: https://arxiv.org/abs/2004.13922
- Secondary (conference paper): https://www.aclweb.org/anthology/2020.findings-emnlp.58
```
@inproceedings{cui-etal-2020-revisiting,
title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
Expand Down

0 comments on commit 0f5fb5d

Please sign in to comment.