forked from FlagAI-Open/FlagAI
-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: ftgreat <[email protected]>
- Loading branch information
Showing
110 changed files
with
2,134 additions
and
189 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
# comments | ||
batch_size: 8 | ||
gradient_accumulation_steps: 1 | ||
lr: 6.0e-5 | ||
warm_up: 0.15 | ||
|
||
bmt_cpu_offload: False | ||
bmt_pre_load: False | ||
|
||
save_optim: True | ||
save_rng: True |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
# comments | ||
batch_size: 10 | ||
gradient_accumulation_steps: 1 | ||
lr: 2.e-4 | ||
warm_up: 0.001 | ||
save_interval: 500 | ||
|
||
bmt_cpu_offload: False | ||
bmt_pre_load: False | ||
bmt_async_load: False | ||
bmt_loss_scale: 65536 | ||
|
||
save_optim: True | ||
save_rng: True | ||
|
||
load_optim: False | ||
|
||
env_args.enable_sft_conversations_dataset_v3: false | ||
enable_sft_dataset_dir: '/data/yzd/FlagAI/examples/gpt3_pretrain/llama/tools/script/' | ||
enable_sft_dataset_file: 'convo_v2.jsonl' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
# Copyright © 2022 BAAI. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License") | ||
import os | ||
import torch | ||
from torch.utils.data import Dataset | ||
import gc | ||
gc.collect() | ||
torch.cuda.empty_cache() | ||
|
||
from flagai.auto_model.auto_loader import AutoLoader | ||
from flagai.data.tokenizer import Tokenizer | ||
from flagai.env_args import EnvArgs | ||
from flagai.env_trainer_v1 import EnvTrainer | ||
|
||
#torch.autograd.set_detect_anomaly(True) | ||
|
||
from examples.gpt3_pretrain.build_index_mappings import _build_train_valid_test_datasets | ||
from examples.gpt3_pretrain.build_index_mappings import _build_train_valid_test_weighted_datasets | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
# You can input all parameters by the command line. | ||
# For example: python train_env_trainer.py --epochs=300 --batch_size=4 --env_type=pytorch | ||
env_args = EnvArgs( | ||
env_type="bmtrain", | ||
experiment_name="llama", | ||
batch_size=1, | ||
gradient_accumulation_steps=1, | ||
lr=2e-4, | ||
weight_decay=1e-3, | ||
epochs=100, | ||
log_interval=10, | ||
eval_interval=5000, | ||
num_gpus=1, | ||
load_dir=None, | ||
pytorch_device=device, | ||
save_dir="checkpoints_llama", | ||
checkpoint_activations=False, | ||
save_interval=5000, | ||
fp16=True, | ||
training_script=__file__, | ||
) | ||
env_args = env_args.parse_args() | ||
#env_args.wandb = False | ||
|
||
# overwrite | ||
if env_args.yaml_config: | ||
import yaml | ||
file_data = open(env_args.yaml_config, 'r', encoding="utf-8").read() | ||
data = yaml.load_all(file_data) | ||
delattr(env_args, 'yaml_config') | ||
arg_dict = env_args.__dict__ | ||
for subdata in data: | ||
for key, value in subdata.items(): | ||
if isinstance(value, list): | ||
for v in value: | ||
arg_dict[key].append(v) | ||
else: | ||
arg_dict[key] = value | ||
trainer = EnvTrainer(env_args) | ||
|
||
# Trainer as Trigger | ||
if not env_args.not_call_launch: | ||
import sys | ||
sys.exit(0) | ||
|
||
print(f"Trainer effective env_args={env_args} local_rank={trainer.local_rank}", flush=True) | ||
|
||
#checkpoints = "/share/project/ldwang/sft/state_dict/" | ||
checkpoints = env_args.pre_load_dir | ||
# model_name = env_args.model_name | ||
|
||
# checkpoints = "/data/yzd/FlagAI/examples/aquila/checkpoints_in/" | ||
model_name = env_args.model_name | ||
# model_name = "aquila-7b" | ||
# env_args.enable_sft_dataset_dir = "/data/yzd/FlagAI/examples/gpt3_pretrain/llama/tools/script/convo_v2.jsonl" | ||
env_args.enable_sft_conversations_dataset_v3 = True | ||
|
||
|
||
print('*'*20, "model_name", model_name, flush=True) | ||
|
||
''' | ||
auto_loader = AutoLoader( | ||
"lm", | ||
model_name=model_name, | ||
model_dir=checkpoints, | ||
only_download_config=True, | ||
) | ||
model = auto_loader.get_model() | ||
tokenizer = auto_loader.get_tokenizer() | ||
print('*'*20, "model", model) | ||
trainer.pre_train(model) | ||
print('*'*20, "model", model) | ||
''' | ||
|
||
cache_dir = os.path.join(checkpoints, model_name) | ||
print('*'*20, "cache_dir", cache_dir) | ||
tokenizer = Tokenizer.from_pretrained(model_name, cache_dir=cache_dir) | ||
print('*'*20, "tokenizer", tokenizer) | ||
|
||
# avoid sync loading models in case of Mem OOM | ||
if env_args.bmt_async_load: | ||
import time | ||
time.sleep(10*60*(trainer.local_rank%4)) | ||
|
||
|
||
config_file = os.path.join(cache_dir, 'config.json') | ||
from flagai.model.llama_model import LLAMAModel | ||
model = LLAMAModel.init_from_json(config_file=config_file) | ||
print('*'*20, "model", model) | ||
|
||
## bmt_pre_load | ||
checkpoint_path = os.path.join(cache_dir, "pytorch_model.bin") | ||
if env_args.bmt_pre_load: | ||
model.load_weights(checkpoint_path) | ||
|
||
trainer.pre_train(model) | ||
|
||
print('*'*20, "model", model, flush=True) | ||
|
||
|
||
## Use Prebuilt DataSets | ||
data_prefix = '/data/yzd/FlagAI/examples/indexed_dataset/data/demo_text_document' | ||
data_impl = 'mmap' | ||
splits_string = '90,10' | ||
train_valid_test_num_samples = [90, 10] | ||
seq_length = 1024 | ||
seed = 2023 | ||
skip_warmup = True | ||
|
||
train_dataset, val_dataset, _ = _build_train_valid_test_datasets( | ||
data_prefix, data_impl, splits_string, | ||
train_valid_test_num_samples, | ||
seq_length, seed, skip_warmup) | ||
print("Total train_dataset: ", len(train_dataset), flush=True) | ||
print("Total valid_dataset: ", len(valid_dataset), flush=True) | ||
|
||
def collate_fn(batch): | ||
def padding(indice, max_length, pad_idx=tokenizer.token_end_id): | ||
pad_indice = [ | ||
item.tolist() + [pad_idx] * max(0, max_length - len(item.tolist())) for item in indice | ||
] | ||
return torch.tensor(pad_indice) | ||
|
||
input_ids = [data["input_ids"] for data in batch] | ||
max_length = max([len(t) for t in input_ids]) | ||
input_ids = padding(input_ids, max_length)[:,:seq_length] | ||
|
||
data = { | ||
"input_ids": input_ids, | ||
"labels": input_ids | ||
} | ||
return data | ||
|
||
trainer.do_train( | ||
train_dataset=train_dataset, | ||
valid_dataset=None, | ||
collate_fn=collate_fn, | ||
optimizer=None, | ||
rank_split=False) |
Oops, something went wrong.