Skip to content

Commit

Permalink
添加性别识别代码和文档
Browse files Browse the repository at this point in the history
  • Loading branch information
vipstone committed May 6, 2018
1 parent 757c8f8 commit 711cdc2
Show file tree
Hide file tree
Showing 4 changed files with 86 additions and 3 deletions.
11 changes: 9 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,9 +53,9 @@

[头像特效合成](doc/compose.md)

性别识别
[性别识别](doc/gender.md)

## 其他相关 ##
## 相关文档 ##

[pip/pip3更换国内源](doc/pipChange.md)

Expand All @@ -82,6 +82,13 @@

----------

**性别识别**

<img src="https://raw.githubusercontent.com/vipstone/faceai/master/res/gender.png" width = "400" height = "220" alt="性别识别" />

----------


**数字化妆**

<img src="https://raw.githubusercontent.com/vipstone/faceai/master/res/faceRecognitionMakeup.png" width = "230" height = "300" alt="视频人脸识别" />
Expand Down
71 changes: 71 additions & 0 deletions doc/gender.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
# 性别识别 #

使用keras实现性别识别,模型数据使用的是oarriaga/face_classification的模型,下文给出项目地址。

# 开发环境 #

- Windows 10
- Python 3.6.4
- keras 2.1.6
- tensorflow 1.8.0

# 效果展示 #

<img src="https://raw.githubusercontent.com/vipstone/faceai/master/res/gender.png" width = "400" height = "220" alt="性别识别" />

# 准备工作 #
在开始之前先要安装keras和tensorflow,在安装模块之前先要把pip的数据源换成国内的,这样能大大提高安装速度。

点击查看:[pip/pip3更换国内源](doc/pipChange.md)

OpenCV添加文字默认情况是乱码的,需要手动转换一下,点击查看:[OpenCV添加中文](doc/chinese.md)

# 开始安装 #

安装keras使用命令:pip3 install keras

安装tensorflow使用命令:pip3 install tensorflow

# 编码部分 #
结合之前[图片人脸检测(OpenCV版)](doc/detectionOpenCV.md)的项目,我们使用OpenCV先识别到人脸,然后在通过keras识别性别,具体代码如下:
```
#coding=utf-8
#性别识别
import cv2
from keras.models import load_model
import numpy as np
import ChineseText
img = cv2.imread("img/gather.png")
face_classifier = cv2.CascadeClassifier(
"C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=3, minSize=(140, 140))
gender_classifier = load_model(
"classifier/gender_models/simple_CNN.81-0.96.hdf5")
gender_labels = {0: '女', 1: '男'}
color = (255, 255, 255)
for (x, y, w, h) in faces:
face = img[(y - 60):(y + h + 60), (x - 30):(x + w + 30)]
face = cv2.resize(face, (48, 48))
face = np.expand_dims(face, 0)
face = face / 255.0
gender_label_arg = np.argmax(gender_classifier.predict(face))
gender = gender_labels[gender_label_arg]
cv2.rectangle(img, (x, y), (x + h, y + w), color, 2)
img = ChineseText.cv2ImgAddText(img, gender, x + h, y, color, 30)
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```

更多信息:

oarriaga/face_classification项目地址:https://github.com/oarriaga/face_classification
2 changes: 1 addition & 1 deletion faceai/gender.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
#coding=utf-8
#表情识别
#性别识别

import cv2
from keras.models import load_model
Expand Down
5 changes: 5 additions & 0 deletions faceai/versionPut.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,12 @@
import cv2
import dlib
import face_recognition
import keras
import tensorflow

print(cv2.__version__) # 输出:3.4.1
print(dlib.__version__) # 输出:19.8.1
print(face_recognition.__version__) #输出:1.2.2

print(keras.__version__) # 输出:2.1.6
print(tensorflow.VERSION) # 输出:1.8.0

0 comments on commit 711cdc2

Please sign in to comment.