forked from vipstone/faceai
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
86 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
# 性别识别 # | ||
|
||
使用keras实现性别识别,模型数据使用的是oarriaga/face_classification的模型,下文给出项目地址。 | ||
|
||
# 开发环境 # | ||
|
||
- Windows 10 | ||
- Python 3.6.4 | ||
- keras 2.1.6 | ||
- tensorflow 1.8.0 | ||
|
||
# 效果展示 # | ||
|
||
<img src="https://raw.githubusercontent.com/vipstone/faceai/master/res/gender.png" width = "400" height = "220" alt="性别识别" /> | ||
|
||
# 准备工作 # | ||
在开始之前先要安装keras和tensorflow,在安装模块之前先要把pip的数据源换成国内的,这样能大大提高安装速度。 | ||
|
||
点击查看:[pip/pip3更换国内源](doc/pipChange.md) | ||
|
||
OpenCV添加文字默认情况是乱码的,需要手动转换一下,点击查看:[OpenCV添加中文](doc/chinese.md) | ||
|
||
# 开始安装 # | ||
|
||
安装keras使用命令:pip3 install keras | ||
|
||
安装tensorflow使用命令:pip3 install tensorflow | ||
|
||
# 编码部分 # | ||
结合之前[图片人脸检测(OpenCV版)](doc/detectionOpenCV.md)的项目,我们使用OpenCV先识别到人脸,然后在通过keras识别性别,具体代码如下: | ||
``` | ||
#coding=utf-8 | ||
#性别识别 | ||
import cv2 | ||
from keras.models import load_model | ||
import numpy as np | ||
import ChineseText | ||
img = cv2.imread("img/gather.png") | ||
face_classifier = cv2.CascadeClassifier( | ||
"C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml" | ||
) | ||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | ||
faces = face_classifier.detectMultiScale( | ||
gray, scaleFactor=1.2, minNeighbors=3, minSize=(140, 140)) | ||
gender_classifier = load_model( | ||
"classifier/gender_models/simple_CNN.81-0.96.hdf5") | ||
gender_labels = {0: '女', 1: '男'} | ||
color = (255, 255, 255) | ||
for (x, y, w, h) in faces: | ||
face = img[(y - 60):(y + h + 60), (x - 30):(x + w + 30)] | ||
face = cv2.resize(face, (48, 48)) | ||
face = np.expand_dims(face, 0) | ||
face = face / 255.0 | ||
gender_label_arg = np.argmax(gender_classifier.predict(face)) | ||
gender = gender_labels[gender_label_arg] | ||
cv2.rectangle(img, (x, y), (x + h, y + w), color, 2) | ||
img = ChineseText.cv2ImgAddText(img, gender, x + h, y, color, 30) | ||
cv2.imshow("Image", img) | ||
cv2.waitKey(0) | ||
cv2.destroyAllWindows() | ||
``` | ||
|
||
更多信息: | ||
|
||
oarriaga/face_classification项目地址:https://github.com/oarriaga/face_classification |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
#coding=utf-8 | ||
#表情识别 | ||
#性别识别 | ||
|
||
import cv2 | ||
from keras.models import load_model | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters