-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Examples] Add pure gpu example of graphsage (dmlc#3796)
* Add pure_gpu example of graphsage * move to advanced directory Co-authored-by: Quan Gan <[email protected]>
- Loading branch information
1 parent
f908f35
commit 57d2f31
Showing
3 changed files
with
139 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
131 changes: 131 additions & 0 deletions
131
examples/pytorch/graphsage/advanced/pure_gpu_node_classification.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torchmetrics.functional as MF | ||
import dgl | ||
import dgl.nn as dglnn | ||
import time | ||
import numpy as np | ||
from ogb.nodeproppred import DglNodePropPredDataset | ||
import tqdm | ||
import argparse | ||
|
||
class SAGE(nn.Module): | ||
def __init__(self, in_feats, n_hidden, n_classes): | ||
super().__init__() | ||
self.layers = nn.ModuleList() | ||
self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean')) | ||
self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean')) | ||
self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean')) | ||
self.dropout = nn.Dropout(0.5) | ||
self.n_hidden = n_hidden | ||
self.n_classes = n_classes | ||
|
||
def forward(self, blocks, x): | ||
h = x | ||
for l, (layer, block) in enumerate(zip(self.layers, blocks)): | ||
h = layer(block, h) | ||
if l != len(self.layers) - 1: | ||
h = F.relu(h) | ||
h = self.dropout(h) | ||
return h | ||
|
||
def inference(self, g, device, batch_size, num_workers, buffer_device=None): | ||
# The difference between this inference function and the one in the official | ||
# example is that the intermediate results can also benefit from prefetching. | ||
feat = g.ndata['feat'] | ||
sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1, prefetch_node_feats=['feat']) | ||
dataloader = dgl.dataloading.NodeDataLoader( | ||
g, torch.arange(g.num_nodes()).to(g.device), sampler, device=device, | ||
batch_size=batch_size, shuffle=False, drop_last=False, | ||
num_workers=num_workers) | ||
|
||
if buffer_device is None: | ||
buffer_device = device | ||
|
||
for l, layer in enumerate(self.layers): | ||
y = torch.empty( | ||
g.num_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes, | ||
device=buffer_device, pin_memory=True) | ||
feat = feat.to(device) | ||
for input_nodes, output_nodes, blocks in tqdm.tqdm(dataloader): | ||
# use an explicitly contuous slice | ||
x = feat[input_nodes] | ||
h = layer(blocks[0], x) | ||
if l != len(self.layers) - 1: | ||
h = F.relu(h) | ||
h = self.dropout(h) | ||
# be design, our output nodes are contiguous so we can take | ||
# advantage of that here | ||
y[output_nodes[0]:output_nodes[-1]+1] = h.to(buffer_device) | ||
feat = y | ||
return y | ||
|
||
|
||
|
||
dataset = DglNodePropPredDataset('ogbn-products') | ||
graph, labels = dataset[0] | ||
graph.ndata['label'] = labels.squeeze() | ||
split_idx = dataset.get_idx_split() | ||
train_idx, valid_idx, test_idx = split_idx['train'], split_idx['valid'], split_idx['test'] | ||
|
||
device = 'cuda' | ||
train_idx = train_idx.to(device) | ||
valid_idx = valid_idx.to(device) | ||
test_idx = test_idx.to(device) | ||
|
||
graph = graph.to(device) | ||
|
||
model = SAGE(graph.ndata['feat'].shape[1], 256, dataset.num_classes).to(device) | ||
opt = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=5e-4) | ||
|
||
sampler = dgl.dataloading.NeighborSampler( | ||
[15, 10, 5], prefetch_node_feats=['feat'], prefetch_labels=['label']) | ||
train_dataloader = dgl.dataloading.DataLoader( | ||
graph, train_idx, sampler, device=device, batch_size=1024, shuffle=True, | ||
drop_last=False, num_workers=0, use_uva=False) | ||
valid_dataloader = dgl.dataloading.NodeDataLoader( | ||
graph, valid_idx, sampler, device=device, batch_size=1024, shuffle=True, | ||
drop_last=False, num_workers=0, use_uva=False) | ||
|
||
durations = [] | ||
for _ in range(10): | ||
model.train() | ||
t0 = time.time() | ||
for it, (input_nodes, output_nodes, blocks) in enumerate(train_dataloader): | ||
x = blocks[0].srcdata['feat'] | ||
y = blocks[-1].dstdata['label'] | ||
y_hat = model(blocks, x) | ||
loss = F.cross_entropy(y_hat, y) | ||
opt.zero_grad() | ||
loss.backward() | ||
opt.step() | ||
if it % 20 == 0: | ||
acc = MF.accuracy(torch.argmax(y_hat, dim=1), y) | ||
mem = torch.cuda.max_memory_allocated() / 1000000 | ||
print('Loss', loss.item(), 'Acc', acc.item(), 'GPU Mem', mem, 'MB') | ||
tt = time.time() | ||
print(tt - t0) | ||
durations.append(tt - t0) | ||
|
||
model.eval() | ||
ys = [] | ||
y_hats = [] | ||
for it, (input_nodes, output_nodes, blocks) in enumerate(valid_dataloader): | ||
with torch.no_grad(): | ||
x = blocks[0].srcdata['feat'] | ||
ys.append(blocks[-1].dstdata['label']) | ||
y_hats.append(torch.argmax(model(blocks, x), dim=1)) | ||
acc = MF.accuracy(torch.cat(y_hats), torch.cat(ys)) | ||
print('Validation acc:', acc.item()) | ||
|
||
print(np.mean(durations[4:]), np.std(durations[4:])) | ||
|
||
# Test accuracy and offline inference of all nodes | ||
model.eval() | ||
with torch.no_grad(): | ||
pred = model.inference(graph, device, 4096, 0, 'cpu') | ||
pred = pred[test_idx].to(device) | ||
label = graph.ndata['label'][test_idx] | ||
acc = MF.accuracy(torch.argmax(pred, dim=1), label) | ||
print('Test acc:', acc.item()) |