Skip to content

The word2vec-BiLSTM-CRF model for CCKS2019 Chinese clinical named entity recognition.

License

Notifications You must be signed in to change notification settings

smallPlan/CCKS2019-Chinese-Clinical-NER

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CCKS2019 Chinese Clinical NER

The word2vec BiLSTM-CRF model for CCKS2019 Chinese clinical named entity recognition.

Dependencies

  • python 3.6
  • gensim 3.4.0
  • jieba 0.39
  • keras 2.2.4
  • keras_contrib 2.0.8
  • numpy 1.16.4
  • pandas 0.24.2

Dataset

The dataset is provided by the CCKS2019.

文本 疾病和诊断 影像检查 实验室检验 手术 药物 解剖部位 总数
1000 2116 222 318 765 456 1486 5363

Data directory structure

  • ./data/
    • original_data/
      • tagged_data/
      • untagged_data/
    • processed_data/
      • test_data.txt
      • train_data.txt
      • untagged_test_data.txt

Data format

  • In the "original_data" directory:
    • Each data file in the "tagged_data" should be in the following format:
      • Each line is a JSON object, with "originalText" and "entities" as JSON keys;
      • The JSON value of "entities" is a list of JSON object, and each JSON object represents an entity with "entity_name", "start_pos", "end_pos", "label_type", "overlap" as its JSON keys;
    • Each data file in the "untagged_data" should be in the following format:
      • Each line is a JSON object, with "originalText" as the JSON key;
  • In the "processed_data" directory: "train_data.txt" and "test_data.txt" should be in the following format:
患 O
者 O
罹 O
患 O
胃 B-疾病和诊断
癌 I-疾病和诊断

每 O
个 O
例 O
子 O
空 O
行 O
分 O
隔 O
  • "untagged_test_data.txt" should be in the following format:
患
者
罹
患
胃
癌

每
个
例
子
空
行
分
隔

Getting Started

Data configuration

  • Please download the dataset from CCKS2019 by yourself.
  • Put the tagged data under the directory "/data/original_data/tagged_data/".
  • Put the untagged data under the directory "/data/original_data/untagged_data/".

Preprocess

python preprocess --tagged True
python preprocess --tagged False

Train the model

python main.py --mode train

Test the model

python main.py --mode test

The prediction, standard results and evaluation would be saved as "test_results.json", "true_results.json" and "eval_results.csv", respectively.

Predict

python main.py --mode predict

The prediction would be saved as "pred_results.json".

Performance

疾病和诊断 影像检查 实验室检验 手术 药物 解剖部位 综合
严格指标 0.49346 0.51851 0.41049 0.55263 0.46835 0.49975 0.49018
松弛指标 0.58800 0.58370 0.54920 0.67105 0.55485 0.55902 0.56851

About

The word2vec-BiLSTM-CRF model for CCKS2019 Chinese clinical named entity recognition.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%