Skip to content

Open Source Image and Video Restoration Toolbox, especially for Super-Resolution, including EDSR, RCAN, SRResNet, SRGAN, ESRGAN, EDVR, etc. Also support StyleGAN2, DFDNet.

Notifications You must be signed in to change notification settings

snail-fly-88/BasicSR

 
 

Repository files navigation

🚀 BasicSR

English | 简体中文GitHub | Gitee码云

⏬ Google Drive: Pretrained Models | Reproduced Experiments ⏬ 百度网盘: 预训练模型 | 复现实验
📈 Training curves in wandb
💻 Commands for training and testing
HOWTOs


BasicSR is an open source image and video super-resolution toolbox based on PyTorch (will extend to more restoration tasks in the future).
(ESRGAN, EDVR, DNI, SFTGAN)

✨ New Feature

  • Sep 8, 2020. Add blind face restoration inference codes: DFDNet. Note that it is slightly different from the official testing codes.

    Blind Face Restoration via Deep Multi-scale Component Dictionaries
    Xiaoming Li, Chaofeng Chen, Shangchen Zhou, Xianhui Lin, Wangmeng Zuo and Lei Zhang
    European Conference on Computer Vision (ECCV), 2020

  • Aug 27, 2020. Add StyleGAN2 training and testing codes: StyleGAN2.

    Analyzing and Improving the Image Quality of StyleGAN
    Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen and Timo Aila
    Computer Vision and Pattern Recognition (CVPR), 2020

More
  • Aug 19, 2020. A brand-new BasicSR v1.0.0 online.

⚡ HOWTOs

We provides simple pipelines to train/test/inference models for quick start. These pipelines/commands cannot cover all the cases and more details are in the following sections.

🔧 Dependencies and Installation

Please run the following commands in the BasicSR root path to install BasicSR:
(Make sure that your GCC version: gcc >= 5)

pip install -r requirements.txt
python setup.py develop

Note that BasicSR is only tested in Ubuntu, and may be not suitable for Windows. You may try Windows WSL with CUDA supports :-) (It is now only available for insider build with Fast ring).

⏳ TODO List

Please see project boards.

🐢 Dataset Preparation

  • Please refer to DatasetPreparation.md for more details.
  • The descriptions of currently supported datasets (torch.utils.data.Dataset classes) are in Datasets.md.

💻 Train and Test

  • Training and testing commands: Please see TrainTest.md for the basic usage.
  • Options/Configs: Please refer to Config.md.
  • Logging: Please refer to Logging.md.

🗃️ Model Zoo and Baselines

  • The descriptions of currently supported models are in Models.md.
  • Pre-trained models and log examples are available in ModelZoo.md.
  • We also provide training curves in wandb:

📝 Codebase Designs and Conventions

Please see DesignConvention.md for the designs and conventions of the BasicSR codebase.
The figure below shows the overall framework. More descriptions for each component:
Datasets.md | Models.md | Config.md | Logging.md

overall_structure

📜 License and Acknowledgement

This project is released under the Apache 2.0 license. More details about license and acknowledgement are in LICENSE.

📧 Contact

If you have any question, please email [email protected].

About

Open Source Image and Video Restoration Toolbox, especially for Super-Resolution, including EDSR, RCAN, SRResNet, SRGAN, ESRGAN, EDVR, etc. Also support StyleGAN2, DFDNet.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 81.0%
  • Cuda 10.7%
  • C++ 7.2%
  • MATLAB 1.1%