English | 简体中文 GitHub | Gitee码云
⏬ Google Drive: Pretrained Models | Reproduced Experiments
⏬ 百度网盘: 预训练模型 | 复现实验
📈 Training curves in wandb
💻 Commands for training and testing
⚡ HOWTOs
BasicSR is an open source image and video super-resolution toolbox based on PyTorch (will extend to more restoration tasks in the future).
(ESRGAN, EDVR, DNI, SFTGAN)
- Sep 8, 2020. Add blind face restoration inference codes: DFDNet. Note that it is slightly different from the official testing codes.
Blind Face Restoration via Deep Multi-scale Component Dictionaries
Xiaoming Li, Chaofeng Chen, Shangchen Zhou, Xianhui Lin, Wangmeng Zuo and Lei Zhang
European Conference on Computer Vision (ECCV), 2020 - Aug 27, 2020. Add StyleGAN2 training and testing codes: StyleGAN2.
Analyzing and Improving the Image Quality of StyleGAN
Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen and Timo Aila
Computer Vision and Pattern Recognition (CVPR), 2020
More
- Aug 19, 2020. A brand-new BasicSR v1.0.0 online.
We provides simple pipelines to train/test/inference models for quick start. These pipelines/commands cannot cover all the cases and more details are in the following sections.
- Python >= 3.7 (Recommend to use Anaconda or Miniconda)
- PyTorch >= 1.3
- NVIDIA GPU + CUDA
Please run the following commands in the BasicSR root path to install BasicSR:
(Make sure that your GCC version: gcc >= 5)
pip install -r requirements.txt
python setup.py develop
Note that BasicSR is only tested in Ubuntu, and may be not suitable for Windows. You may try Windows WSL with CUDA supports :-) (It is now only available for insider build with Fast ring).
Please see project boards.
- Please refer to DatasetPreparation.md for more details.
- The descriptions of currently supported datasets (
torch.utils.data.Dataset
classes) are in Datasets.md.
- Training and testing commands: Please see TrainTest.md for the basic usage.
- Options/Configs: Please refer to Config.md.
- Logging: Please refer to Logging.md.
- The descriptions of currently supported models are in Models.md.
- Pre-trained models and log examples are available in ModelZoo.md.
- We also provide training curves in wandb:
Please see DesignConvention.md for the designs and conventions of the BasicSR codebase.
The figure below shows the overall framework. More descriptions for each component:
Datasets.md | Models.md | Config.md | Logging.md
This project is released under the Apache 2.0 license. More details about license and acknowledgement are in LICENSE.
If you have any question, please email [email protected]
.