Zen is a highly modular AI conversation engine built in Go that emphasizes pluggable architecture and platform independence. It provides a flexible foundation for building conversational systems through:
- Plugin-based architecture with hot-swappable components
- Multi-provider LLM support (OpenAI, custom providers)
- Cross-platform conversation management
- Extensible manager system for custom behaviors
- Vector-based semantic storage with pgvector
- Manager System: Extend functionality through custom managers
- Insight Manager: Extracts and maintains conversation insights
- Personality Manager: Handles response behavior and style
- Custom Managers: Add your own specialized behaviors
- Shared State System: Centralized state management across components
- Manager-specific data storage
- Custom data injection
- Cross-manager communication
- Provider Abstraction: Support for multiple LLM providers
- Built-in OpenAI support
- Extensible provider interface for custom LLMs
- Configurable model selection per operation
- Automatic fallback and retry handling
- Platform Agnostic Core:
- Abstract conversation engine independent of platforms
- Built-in support for CLI chat and Twitter
- Extensible platform manager interface
- Example implementations for new platform integration
- Flexible Data Storage:
- PostgreSQL with pgvector for semantic search
- GORM-based data models
- Customizable fragment storage
- Vector embedding support
- Pluggable Tool/Function Integration:
- Support for custom tool implementations
- Built-in toolkit management
- Function calling capabilities
- Automatic tool response handling
- State-aware tool execution
- LLM Providers: Add new AI providers by implementing the LLM interface
type Provider interface {
GenerateCompletion(context.Context, CompletionRequest) (string, error)
GenerateJSON(context.Context, JSONRequest, interface{}) error
EmbedText(context.Context, string) ([]float32, error)
}
- Managers: Create new behaviors by implementing the Manager interface
type Manager interface {
GetID() ManagerID
GetDependencies() []ManagerID
Process(state *state.State) error
PostProcess(state *state.State) error
Context(state *state.State) ([]state.StateData, error)
Store(fragment *db.Fragment) error
StartBackgroundProcesses()
StopBackgroundProcesses()
RegisterEventHandler(callback EventCallbackFunc)
triggerEvent(eventData EventData)
}
- Clone the repository
git clone https://github.com/soralabs/zen
- Copy
.env.example
to.env
and configure your environment variables - Install dependencies:
go mod download
- Run the chat example:
go run examples/chat/main.go
- Run the Twitter bot:
go run examples/twitter/main.go
DB_URL=postgresql://user:password@localhost:5432/zen
OPENAI_API_KEY=your_openai_api_key
DEEPSEEK_API_KEY=your_deepseek_api_key
Platform-specific credentials as needed
The project follows a clean, modular architecture:
engine
: Core conversation enginemanager
: Plugin manager systemmanagers/*
: Built-in manager implementationsstate
: Shared state managementllm
: LLM provider interfacesstores
: Data storage implementationstools/*
: Built-in tool implementationsexamples/
: Reference implementations
- Add Zen to your Go project:
go get github.com/soralabs/zen
- Import Zen in your code:
import (
"github.com/soralabs/zen/engine"
"github.com/soralabs/zen/llm"
"github.com/soralabs/zen/manager"
"github.com/soralabs/zen/managers/personality"
"github.com/soralabs/zen/managers/insight"
... etc
)
- Basic usage example:
// Initialize LLM client
llmClient, err := llm.NewLLMClient(llm.Config{
ProviderType: llm.ProviderOpenAI,
APIKey: os.Getenv("OPENAI_API_KEY"),
ModelConfig: map[llm.ModelType]string{
llm.ModelTypeDefault: openai.GPT4,
},
Logger: logger,
Context: ctx,
})
// Create engine instance
engine, err := engine.New(
engine.WithContext(ctx),
engine.WithLogger(logger),
engine.WithDB(db),
engine.WithLLM(llmClient),
)
// Process input
state, err := engine.NewState(actorID, sessionID, "Your input text here")
if err != nil {
log.Fatal(err)
}
response, err := engine.Process(state)
if err != nil {
log.Fatal(err)
}
- Available packages:
zen/engine
: Core conversation enginezen/llm
: LLM provider interfaces and implementationszen/manager
: Base manager systemzen/managers/*
: Built-in manager implementationszen/state
: State management utilitieszen/stores
: Data storage implementations
For detailed examples, see the examples/
directory in the repository.