diffsptk is a differentiable version of SPTK based on the PyTorch framework.
- Python 3.9+
- PyTorch 2.0.0+
The latest stable release can be installed through PyPI by running
pip install diffsptk
The development release can be installed from the master branch:
pip install git+https://github.com/sp-nitech/diffsptk.git@master
import diffsptk
fl = 400 # Frame length.
fp = 80 # Frame period.
n_fft = 512 # FFT length.
M = 24 # Mel-cepstrum dimensions.
# Read waveform.
x, sr = diffsptk.read("assets/data.wav")
# Compute STFT amplitude of x.
stft = diffsptk.STFT(frame_length=fl, frame_period=fp, fft_length=n_fft)
X = stft(x)
# Estimate mel-cepstrum of x.
alpha = diffsptk.get_alpha(sr)
mcep = diffsptk.MelCepstralAnalysis(cep_order=M, fft_length=n_fft, alpha=alpha, n_iter=10)
mc = mcep(X)
# Reconstruct x.
mlsa = diffsptk.MLSA(filter_order=M, frame_period=fp, alpha=alpha, taylor_order=20)
x_hat = mlsa(mlsa(x, -mc), mc)
# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)
# Compute error.
error = (x_hat - x).abs().sum()
print(error)
# Extract pitch of x.
pitch = diffsptk.Pitch(frame_period=fp, sample_rate=sr, f_min=80, f_max=180)
p = pitch(x)
# Generate excitation signal.
excite = diffsptk.ExcitationGeneration(frame_period=fp)
e = excite(p)
n = diffsptk.nrand(x.size(0) - 1)
# Synthesize waveform.
x_voiced = mlsa(e, mc)
x_unvoiced = mlsa(n, mc)
# Output analysis-synthesis result.
diffsptk.write("voiced.wav", x_voiced, sr)
diffsptk.write("unvoiced.wav", x_unvoiced, sr)
import diffsptk
fl = 400 # Frame length.
fp = 80 # Frame period.
M = 24 # LPC dimensions.
# Read waveform.
x, sr = diffsptk.read("assets/data.wav")
# Estimate LPC of x.
frame = diffsptk.Frame(frame_length=fl, frame_period=fp)
window = diffsptk.Window(in_length=fl)
lpc = diffsptk.LPC(frame_length=fl, lpc_order=M, eps=1e-6)
a = lpc(window(frame(x)))
# Convert to inverse filter coefficients.
norm0 = diffsptk.AllPoleToAllZeroDigitalFilterCoefficients(filter_order=M)
b = norm0(a)
# Reconstruct x.
zerodf = diffsptk.AllZeroDigitalFilter(filter_order=M, frame_period=fp)
poledf = diffsptk.AllPoleDigitalFilter(filter_order=M, frame_period=fp)
x_hat = poledf(zerodf(x, b), a)
# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)
# Compute error.
error = (x_hat - x).abs().sum()
print(error)
import diffsptk
fl = 400 # Frame length
fp = 80 # Frame period
n_fft = 512 # FFT length
n_channel = 80 # Number of channels
M = 12 # MFCC/PLP dimensions
# Read waveform.
x, sr = diffsptk.read("assets/data.wav")
# Compute STFT amplitude of x.
stft = diffsptk.STFT(frame_length=fl, frame_period=fp, fft_length=n_fft)
X = stft(x)
# Extract log mel-spectrogram.
fbank = diffsptk.MelFilterBankAnalysis(
n_channel=n_channel,
fft_length=n_fft,
sample_rate=sr,
)
Y = fbank(X)
print(Y.shape)
# Extract MFCC.
mfcc = diffsptk.MFCC(
mfcc_order=M,
n_channel=n_channel,
fft_length=n_fft,
sample_rate=sr,
)
Y = mfcc(X)
print(Y.shape)
# Extract PLP.
plp = diffsptk.PLP(
plp_order=M,
n_channel=n_channel,
fft_length=n_fft,
sample_rate=sr,
)
Y = plp(X)
print(Y.shape)
import diffsptk
K = 4 # Number of subbands.
M = 40 # Order of filter.
# Read waveform.
x, sr = diffsptk.read("assets/data.wav")
# Decompose x.
pqmf = diffsptk.PQMF(K, M)
decimate = diffsptk.Decimation(K)
y = decimate(pqmf(x))
# Reconstruct x.
interpolate = diffsptk.Interpolation(K)
ipqmf = diffsptk.IPQMF(K, M)
x_hat = ipqmf(interpolate(K * y)).reshape(-1)
# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)
# Compute error.
error = (x_hat - x).abs().sum()
print(error)
import diffsptk
# Read waveform.
x, sr = diffsptk.read("assets/data.wav")
# Decompose x.
gammatone = diffsptk.GammatoneFilterBankAnalysis(sr)
y = gammatone(x)
# Reconstruct x.
igammatone = diffsptk.GammatoneFilterBankSynthesis(sr)
x_hat = igammatone(y).reshape(-1)
# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)
# Compute error.
error = (x_hat - x).abs().sum()
print(error)
import diffsptk
import librosa # This is to get sample audio.
fp = 128 # Frame period.
K = 252 # Number of CQ-bins.
B = 36 # Number of bins per octave.
# Read waveform.
x, sr = diffsptk.read(librosa.ex("trumpet"))
# Transform x.
cqt = diffsptk.CQT(fp, sr, n_bin=K, n_bin_per_octave=B)
c = cqt(x)
# Reconstruct x.
icqt = diffsptk.ICQT(fp, sr, n_bin=K, n_bin_per_octave=B)
x_hat = icqt(c, out_length=x.size(0))
# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)
# Compute error.
error = (x_hat - x).abs().sum()
print(error)
import diffsptk
fl = 512 # Frame length.
# Read waveform.
x, sr = diffsptk.read("assets/data.wav")
# Transform x.
mdct = diffsptk.MDCT(fl)
c = mdct(x)
# Reconstruct x.
imdct = diffpstk.IMDCT(fl)
x_hat = imdct(c, out_length=x.size(0))
# Write reconstructed waveform.
diffsptk.write("reconst.wav", x_hat, sr)
# Compute error.
error = (x_hat - x).abs().sum()
print(error)
import diffsptk
K = 2 # Codebook size.
M = 4 # Order of vector.
# Prepare input.
x = diffsptk.nrand(M)
# Quantize x.
vq = diffsptk.VectorQuantization(M, K)
x_hat, indices, commitment_loss = vq(x)
# Compute error.
error = (x_hat - x).abs().sum()
print(error)
This software is released under the Apache License 2.0.
@InProceedings{sp-nitech2023sptk,
author = {Takenori Yoshimura and Takato Fujimoto and Keiichiro Oura and Keiichi Tokuda},
title = {{SPTK4}: An open-source software toolkit for speech signal processing},
booktitle = {12th ISCA Speech Synthesis Workshop (SSW 2023)},
pages = {211--217},
year = {2023},
}