Skip to content
/ darkapi Public

An API for Darknet image detection neural networks like YOLO

License

Notifications You must be signed in to change notification settings

squat/darkapi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Darkapi

An API for Darknet image detection neural networks like YOLO.

Build Status

Running

The easiest way to use Darkapi is to run the pre-built container:

docker run --rm --name darkapi -p 8080:8080 --device=/dev/nvidiactl --device=/dev/nvidia-uvm --device=/dev/nvidia0 --volume=/opt/nvidia:/usr/local/nvidia:ro squat/darkapi

You can then make requests against the container service, e.g.:

curl 127.0.0.1:8080/api/yolo -F '=@./vendor/darknet/data/dog.jpg'

To deploy Darkapi to a Kubernetes cluster, you must have nodes with GPUs and with device plugins installed. Once ready, create the example deployment:

kubectl apply -f kubernetes/deployment.yaml

Building

If you prefer to build Darkapi yourself, first download the sources:

git clone https://github.com/squat/darkapi
cd darkapi

By default, Darkapi is built inside of a NVIDIA Docker container to ensure that the necessary CUDA libraries are present and to guarantee consistent builds.

make

Note: if you have all the necessary CUDA libraries installed locally and wish to run the builds directly on your machine, set CONTAINERIZE=0:

make CONTAINERIZE=0

If you want to build Darkapi without GPU support, set GPU=0:

make GPU=0

Finally, you will need to download the model weights to be able to use the networks:

make weights

Usage

API

By default, the Darkapi server runs on port 8080, though this can be configured with the -p flag.

darkapi -p 1337

POST /api/yolo

Run the YOLO object detector on an uploaded image. This endpoint expects an image in a multipart upload. Example:

curl 127.0.0.1:8080/api/yolo -F '=@./vendor/darknet/data/dog.jpg'
# {
#   "size": 163759,
#   "x": 768,
#   "y": 576,
#   "c": 3,
#   "time": 10.835417,
#   "detections": [
#     {
#       "label": "dog",
#       "p": 0.990042,
#       "x": 0.288539,
#       "y": 0.660512,
#       "w": 0.243191,
#       "h": 0.542467
#     },
#     {
#       "label": "truck",
#       "p": 0.92372,
#       "x": 0.756574,
#       "y": 0.222694,
#       "w": 0.280832,
#       "h": 0.147699
#     },
#     {
#       "label": "car",
#       "p": 0.259004,
#       "x": 0.774838,
#       "y": 0.224054,
#       "w": 0.246296,
#       "h": 0.142042
#     },
#     {
#       "label": "bicycle",
#       "p": 0.994177,
#       "x": 0.473209,
#       "y": 0.483861,
#       "w": 0.516853,
#       "h": 0.576053
#     }
#   ]
# }

POST /api/yolo9000

Run the YOLO9000 object detector on an uploaded image. This endpoint expects an image in a multipart upload. Example:

curl 127.0.0.1:8080/api/yolo9000 -F '=@./vendor/darknet/data/dog.jpg'
# {
#   "size": 163759,
#   "x": 768,
#   "y": 576,
#   "c": 3,
#   "time": 7.798958,
#   "detections": [
#     {
#       "label": "Shetland sheepdog",
#       "p": 0.563054,
#       "x": 0.305005,
#       "y": 0.647629,
#       "w": 0.23873,
#       "h": 0.528642
#     },
#     {
#       "label": "tom",
#       "p": 0.402929,
#       "x": 0.278132,
#       "y": 0.657537,
#       "w": 0.296026,
#       "h": 0.600402
#     },
#     {
#       "label": "tortoiseshell",
#       "p": 0.475844,
#       "x": 0.287831,
#       "y": 0.654079,
#       "w": 0.257309,
#       "h": 0.552583
#     },
#     {
#       "label": "push-bike",
#       "p": 0.257703,
#       "x": 0.514435,
#       "y": 0.503511,
#       "w": 0.421874,
#       "h": 0.384144
#     },
#     {
#       "label": "bicycle-built-for-two",
#       "p": 0.570866,
#       "x": 0.507706,
#       "y": 0.495363,
#       "w": 0.455473,
#       "h": 0.511342
#     },
#     {
#       "label": "limousine",
#       "p": 0.701897,
#       "x": 0.731044,
#       "y": 0.210221,
#       "w": 0.318366,
#       "h": 0.172348
#     }
#   ]
# }

POST /api/tiny

Run the tiny YOLO object detector on an uploaded image. This endpoint expects an image in a multipart upload. Example:

curl 127.0.0.1:8080/api/tiny -F '=@./vendor/darknet/data/dog.jpg'
# {
#   "size": 163759,
#   "x": 768,
#   "y": 576,
#   "c": 3,
#   "time": 1.051016,
#   "detections": [
#     {
#       "label": "dog",
#       "p": 0.819004,
#       "x": 0.284219,
#       "y": 0.689174,
#       "w": 0.28744,
#       "h": 0.516138
#     },
#     {
#       "label": "car",
#       "p": 0.738448,
#       "x": 0.74617,
#       "y": 0.221734,
#       "w": 0.267723,
#       "h": 0.161173
#     },
#     {
#       "label": "car",
#       "p": 0.380406,
#       "x": 0.113937,
#       "y": 0.176513,
#       "w": 0.04088,
#       "h": 0.049404
#     },
#     {
#       "label": "car",
#       "p": 0.304245,
#       "x": 0.67088,
#       "y": 0.208459,
#       "w": 0.152685,
#       "h": 0.132376
#     },
#     {
#       "label": "bicycle",
#       "p": 0.589162,
#       "x": 0.423873,
#       "y": 0.506519,
#       "w": 0.685571,
#       "h": 0.512563
#     },
#     {
#       "label": "person",
#       "p": 0.267455,
#       "x": 0.96026,
#       "y": 0.403358,
#       "w": 0.07195,
#       "h": 0.910909
#     },
#     {
#       "label": "person",
#       "p": 0.261761,
#       "x": 0.57678,
#       "y": 0.176673,
#       "w": 0.03534,
#       "h": 0.058247
#     }
#   ]
# }

GET /healthz

The /healthz endpoint returns a 200 if the API is running.

About

An API for Darknet image detection neural networks like YOLO

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published