Skip to content

srib/kvikio

 
 

Repository files navigation

C++ and Python bindings to cuFile

Summary

This provides C++ and Python bindings to cuFile, which enables GPUDirect Storage (or GDS).

Features

  • Object Oriented API
  • Exception handling
  • Zarr reader

Requirements

To install users should have a working Linux machine with CUDA Toolkit installed (v11.4+) and a working compiler toolchain (C++17 and cmake).

C++

The C++ bindings are header-only and depends on CUDA Driver and Runtime API. In order to build and run the example code, CMake is required.

Python

The Python packages depends on the following packages:

  • Cython
  • Pip
  • Setuptools

For testing:

  • pytest
  • cupy

Install

Conda

Install the stable releease from the rapidsai channel like:

conda create -n kvikio_env -c rapidsai -c conda-forge kvikio

Install the kvikio conda package from the rapidsai-nightly channel like:

conda create -n kvikio_env -c rapidsai-nightly -c conda-forge python=3.8 cudatoolkit=11.5 kvikio

C++ (build from source)

To build the C++ example, go to the cpp subdiretory and run:

mkdir build
cd build
cmake ..
make

Then run the example:

./examples/basic_io

Python (build from source)

To build and install the extension, go to the python subdiretory and run:

python -m pip install .

One might have to define CUDA_HOME to the path to the CUDA installation.

In order to test the installation, run the following:

pytest tests/

And to test performance, run the following:

python benchmarks/single-node-io.py

Examples

C++

#include <cstddef>
#include <cuda_runtime.h>
#include <kvikio/file_handle.hpp>
using namespace std;

int main()
{
  // Create two arrays `a` and `b`
  constexpr std::size_t size = 100;
  void *a = nullptr;
  void *b = nullptr;
  cudaMalloc(&a, size);
  cudaMalloc(&b, size);

  // Write `a` to file
  kvikio::FileHandle fw("test-file", "w");
  size_t written = fw.write(a, size);
  fw.close();

  // Read file into `b`
  kvikio::FileHandle fr("test-file", "r");
  size_t read = fr.read(b, size);
  fr.close();

  // Read file into `b` in parallel using 16 threads
  kvikio::default_thread_pool::reset(16);
  {
    kvikio::FileHandle f("test-file", "r");
    future<size_t> future = f.pread(b_dev, sizeof(a), 0);  // Non-blocking
    size_t read = future.get(); // Blocking
    // Notice, `f` closes automatically on destruction.
  }
}

Python

import cupy
import kvikio

a = cupy.arange(100)
f = kvikio.CuFile("test-file", "w")
# Write whole array to file
f.write(a)
f.close()

b = cupy.empty_like(a)
f = kvikio.CuFile("test-file", "r")
# Read whole array from file
f.read(b)
assert all(a == b)

# Use contexmanager
c = cupy.empty_like(a)
with kvikio.CuFile(path, "r") as f:
    f.read(c)
assert all(a == c)

# Non-blocking read
d = cupy.empty_like(a)
with kvikio.CuFile(path, "r") as f:
    future1 = f.pread(d[:50])
    future2 = f.pread(d[50:], file_offset=d[:50].nbytes)
    future1.get()  # Wait for first read
    future2.get()  # Wait for second read
assert all(a == d)

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 52.1%
  • Python 23.7%
  • C++ 13.4%
  • Cython 5.8%
  • CMake 2.7%
  • Shell 1.9%
  • HTML 0.4%