Highly opinionated template for deploying a single k3s cluster with Ansible and Terraform backed by Flux and SOPS.
The purpose here is to showcase how you can deploy an entire Kubernetes cluster and show it off to the world using the GitOps tool Flux. When completed, your Git repository will be driving the state of your Kubernetes cluster. In addition with the help of the Ansible, Terraform and Flux SOPS integrations you'll be able to commit GPG encrypted secrets to your public repo.
The following components will be installed in your k3s cluster by default. They are only included to get a minimum viable cluster up and running. You are free to add / remove components to your liking but anything outside the scope of the below components are not supported by this template.
Feel free to read up on any of these technologies before you get started to be more familiar with them.
- flannel - default CNI provided by k3s
- local-path-provisioner - default storage class provided by k3s
- flux - GitOps tool for deploying manifests from the
cluster
directory - metallb - bare metal load balancer
- cert-manager - SSL certificates - with Cloudflare DNS challenge
- traefik - ingress controller
- hajimari - start page with ingress discovery
- system-upgrade-controller - upgrade k3s
- reloader - restart pods when configmap or secret changes
For provisioning the following tools will be used:
- Ubuntu - this is a pretty universal operating system that supports running all kinds of home related workloads in Kubernetes
- Ansible - this will be used to provision the Ubuntu operating system to be ready for Kubernetes and also to install k3s
- Terraform - in order to help with the DNS settings this will be used to provision an already existing Cloudflare domain and DNS settings
- One or mote nodes with a fresh install of Ubuntu Server 20.04. These nodes can be bare metal or VMs.
- A Cloudflare account with a domain, this will be managed by Terraform.
- Some experience in debugging problems and a positive attitude ;)
π You should install the below CLI tools on your workstation. Make sure you pull in the latest versions.
Tool | Purpose |
---|---|
ansible | Preparing Ubuntu for Kubernetes and installing k3s |
direnv | Exports env vars based on present working directory |
flux | Operator that manages your k8s cluster based on your Git repository |
gnupg | Encrypts and signs your data |
go-task | A task runner / simpler Make alternative written in Go |
ipcalc | Used to verify settings in the configure script |
jq | Used to verify settings in the configure script |
kubectl | Allows you to run commands against Kubernetes clusters |
pinentry | Allows GnuPG to read passphrases and PIN numbers |
sops | Encrypts k8s secrets with GnuPG |
terraform | Prepare a Cloudflare domain to be used with the cluster |
Tool | Purpose |
---|---|
helm | Manage Kubernetes applications |
kustomize | Template-free way to customize application configuration |
pre-commit | Runs checks pre git commit |
prettier | Prettier is an opinionated code formatter. |
It is advisable to install pre-commit and the pre-commit hooks that come with this repository. sops-pre-commit will check to make sure you are not by accident committing your secrets un-encrypted.
After pre-commit is installed on your machine run:
pre-commit install-hooks
The Git repository contains the following directories under cluster
and are ordered below by how Flux will apply them.
- base directory is the entrypoint to Flux
- crds directory contains custom resource definitions (CRDs) that need to exist globally in your cluster before anything else exists
- core directory (depends on crds) are important infrastructure applications (grouped by namespace) that should never be pruned by Flux
- apps directory (depends on core) is where your common applications (grouped by namespace) could be placed, Flux will prune resources here if they are not tracked by Git anymore
cluster
βββ apps
β βββ default
β βββ networking
β βββ system-upgrade
βββ base
β βββ flux-system
βββ core
β βββ cert-manager
β βββ metallb-system
β βββ namespaces
β βββ system-upgrade
βββ crds
βββ cert-manager
Very first step will be to create a new repository by clicking the Use this template button on this page.
Clone the repo to you local workstation and cd
into it.
π All of the below commands are run on your local workstation, not on any of your cluster nodes.
π Here we will create a personal and a Flux GPG key. Using SOPS with GnuPG allows us to encrypt and decrypt secrets.
- Create a Personal GPG Key, password protected, and export the fingerprint. It's strongly encouraged to back up this key somewhere safe so you don't lose it.
export GPG_TTY=$(tty)
export PERSONAL_KEY_NAME="First name Last name (location) <email>"
gpg --batch --full-generate-key <<EOF
Key-Type: 1
Key-Length: 4096
Subkey-Type: 1
Subkey-Length: 4096
Expire-Date: 0
Name-Real: ${PERSONAL_KEY_NAME}
EOF
gpg --list-secret-keys "${PERSONAL_KEY_NAME}"
# pub rsa4096 2021-03-11 [SC]
# 772154FFF783DE317KLCA0EC77149AC618D75581
# uid [ultimate] k8s@home (Macbook) <[email protected]>
# sub rsa4096 2021-03-11 [E]
- Create a Flux GPG Key and export the fingerprint
export GPG_TTY=$(tty)
export FLUX_KEY_NAME="Cluster name (Flux) <email>"
gpg --batch --full-generate-key <<EOF
%no-protection
Key-Type: 1
Key-Length: 4096
Subkey-Type: 1
Subkey-Length: 4096
Expire-Date: 0
Name-Real: ${FLUX_KEY_NAME}
EOF
gpg --list-secret-keys "${FLUX_KEY_NAME}"
# pub rsa4096 2021-03-11 [SC]
# AB675CE4CC64251G3S9AE1DAA88ARRTY2C009E2D
# uid [ultimate] Home cluster (Flux) <[email protected]>
# sub rsa4096 2021-03-11 [E]
- You will need the Fingerprints in the configuration section below. For example, in the above steps you will need
772154FFF783DE317KLCA0EC77149AC618D75581
andAB675CE4CC64251G3S9AE1DAA88ARRTY2C009E2D
In order to use Terraform and cert-manager
with the Cloudflare DNS challenge you will need to create a API key.
-
Head over to Cloudflare and create a API key by going here.
-
Under the
API Keys
section, create a global API Key. -
Use the API Key in the configuration section below.
π The .config.env
file contains necessary configuration files that are needed by Ansible, Terraform and Flux.
-
Copy the
.config.sample.env
to.config.env
and start filling out all the environment variables. All are required and read the comments they will explain further what is required. -
Once that is done, verify the configuration is correct by running
./configure.sh --verify
-
If you do not encounter any errors run
./configure.sh
to start having the script wire up the templated files and place them where they need to be.
π Here we will be running a Ansible Playbook to prepare Ubuntu for running a Kubernetes cluster.
-
Ensure you are able to SSH into you nodes from your workstation with using your private ssh key. This is how Ansible is able to connect to your remote nodes.
-
Install the deps by running
task ansible:deps
-
Verify Ansible can view your config by running
task ansible:list
-
Verify Ansible can ping your nodes by running
task ansible:ping
-
Finally, run the Ubuntu Prepare playbook by running
task ansible:playbook:ubuntu-prepare
-
If everything goes as planned you should see Ansible running the Ubuntu Prepare Playbook against your nodes.
π Here we will be running a Ansible Playbook to install k3s with this wonderful k3s Ansible galaxy role. After completion, Ansible will drop a kubeconfig
in /tmp/kubeconfig
for use with interacting with your cluster with kubectl
. This file should be manually copied to the root of your repository.
-
Verify Ansible can view your config by running
task ansible:list
-
Verify Ansible can ping your nodes by running
task ansible:adhoc:ping
-
Run the k3s install playbook by running
task ansible:playbook:k3s-install
-
If everything goes as planned you should see Ansible running the k3s install Playbook against your nodes.
-
Copy the
kubeconfig
file from/tmp
to your repository. -
Verify the nodes are online
kubectl --kubeconfig=./kubeconfig get nodes
# NAME STATUS ROLES AGE VERSION
# k8s-0 Ready control-plane,master 4d20h v1.21.5+k3s1
# k8s-1 Ready worker 4d20h v1.21.5+k3s1
π Here we will be installing flux after some quick bootstrap steps.
- Verify Flux can be installed
flux --kubeconfig=./kubeconfig check --pre
# βΊ checking prerequisites
# β kubectl 1.21.5 >=1.18.0-0
# β Kubernetes 1.21.5+k3s1 >=1.16.0-0
# β prerequisites checks passed
- Pre-create the
flux-system
namespace
kubectl --kubeconfig=./kubeconfig create namespace flux-system --dry-run=client -o yaml | kubectl --kubeconfig=./kubeconfig apply -f -
- Add the Flux GPG key in-order for Flux to decrypt SOPS secrets
source .config.env
gpg --export-secret-keys --armor "${BOOTSTRAP_FLUX_KEY_FP}" |
kubectl --kubeconfig=./kubeconfig create secret generic sops-gpg \
--namespace=flux-system \
--from-file=sops.asc=/dev/stdin
π Variables defined in ./cluster/base/cluster-secrets.sops.yaml
and ./cluster/base/cluster-settings.sops.yaml
will be usable anywhere in your YAML manifests under ./cluster
-
Verify all the above files are encrypted with SOPS
-
If you verified all the secrets are encrypted, you can delete the
tmpl
directory now -
Push you changes to git
git add -A
git commit -m "initial commit"
git push
- Install Flux
π Due to race conditions with the Flux CRDs you will have to run the below command twice. There should be no errors on this second run.
kubectl --kubeconfig=./kubeconfig apply --kustomize=./cluster/base/flux-system
# namespace/flux-system configured
# customresourcedefinition.apiextensions.k8s.io/alerts.notification.toolkit.fluxcd.io created
# ...
# unable to recognize "./cluster/base/flux-system": no matches for kind "Kustomization" in version "kustomize.toolkit.fluxcd.io/v1beta1"
# unable to recognize "./cluster/base/flux-system": no matches for kind "GitRepository" in version "source.toolkit.fluxcd.io/v1beta1"
# unable to recognize "./cluster/base/flux-system": no matches for kind "HelmRepository" in version "source.toolkit.fluxcd.io/v1beta1"
# unable to recognize "./cluster/base/flux-system": no matches for kind "HelmRepository" in version "source.toolkit.fluxcd.io/v1beta1"
# unable to recognize "./cluster/base/flux-system": no matches for kind "HelmRepository" in version "source.toolkit.fluxcd.io/v1beta1"
# unable to recognize "./cluster/base/flux-system": no matches for kind "HelmRepository" in version "source.toolkit.fluxcd.io/v1beta1"
- Verify Flux components are running in the cluster
kubectl --kubeconfig=./kubeconfig get pods -n flux-system
# NAME READY STATUS RESTARTS AGE
# helm-controller-5bbd94c75-89sb4 1/1 Running 0 1h
# kustomize-controller-7b67b6b77d-nqc67 1/1 Running 0 1h
# notification-controller-7c46575844-k4bvr 1/1 Running 0 1h
# source-controller-7d6875bcb4-zqw9f 1/1 Running 0 1h
π Congratulations you have a Kubernetes cluster managed by Flux, your Git repository is driving the state of your cluster.
π Review the Terraform scripts under ./terraform/cloudflare/
and make sure you understand what it's doing (no really review it). If your domain already has existing DNS records be sure to export those DNS settings before you continue. Ideally you can update the terraform script to manage DNS for all records if you so choose to.
-
Pull in the Terraform deps by running
task terraform:init
-
Review the changes Terraform will make to your Cloudflare domain by running
task terraform:plan
-
Finally have Terraform execute the task by running
task terraform:apply
If Terraform was ran successfully head over to your browser and you should be able to access https://hajimari.${BOOTSTRAP_CLOUDFLARE_DOMAIN}
This is a great tool to export environment variables depending on what your present working directory is, head over to their installation guide and don't forget to hook it into your shell!
When this is done you no longer have to use --kubeconfig=./kubeconfig
in your kubectl
, flux
or helm
commands.
VSCode SOPS is a neat little plugin for those using VSCode. It will automatically decrypt you SOPS secrets when you click on the file in the editor and encrypt them when you save and exit the file.
Manually sync Flux with your Git repository
flux --kubeconfig=./kubeconfig reconcile source git flux-system
# βΊ annotating GitRepository flux-system in flux-system namespace
# β GitRepository annotated
# β waiting for GitRepository reconciliation
# β GitRepository reconciliation completed
# β fetched revision main/943e4126e74b273ff603aedab89beb7e36be4998
Show the health of you kustomizations
kubectl --kubeconfig=./kubeconfig get kustomization -A
# NAMESPACE NAME READY STATUS AGE
# flux-system apps True Applied revision: main/943e4126e74b273ff603aedab89beb7e36be4998 3d19h
# flux-system core True Applied revision: main/943e4126e74b273ff603aedab89beb7e36be4998 4d6h
# flux-system crds True Applied revision: main/943e4126e74b273ff603aedab89beb7e36be4998 4d6h
# flux-system flux-system True Applied revision: main/943e4126e74b273ff603aedab89beb7e36be4998 4d6h
Show the health of your main Flux GitRepository
flux --kubeconfig=./kubeconfig get sources git
# NAME READY MESSAGE REVISION SUSPENDED
# flux-system True Fetched revision: main/943e4126e74b273ff603aedab89beb7e36be4998 main/943e4126e74b273ff603aedab89beb7e36be4998 False
Show the health of your HelmRelease
s
flux --kubeconfig=./kubeconfig get helmrelease -A
# NAMESPACE NAME READY MESSAGE REVISION SUSPENDED
# cert-manager cert-manager True Release reconciliation succeeded v1.5.2 False
# default hajimari True Release reconciliation succeeded 1.1.1 False
# networking ingress-nginx True Release reconciliation succeeded 3.30.0 False
Show the health of your HelmRepository
s
flux --kubeconfig=./kubeconfig get sources helm -A
# NAMESPACE NAME READY MESSAGE REVISION SUSPENDED
# flux-system bitnami-charts True Fetched revision: 0ec3a3335ff991c45735866feb1c0830c4ed85cf 0ec3a3335ff991c45735866feb1c0830c4ed85cf False
# flux-system hajimari-charts True Fetched revision: 1b24af9c5a1e3da91618d597f58f46a57c70dc13 1b24af9c5a1e3da91618d597f58f46a57c70dc13 False
# flux-system ingress-nginx-charts True Fetched revision: 45669a3117fc93acc09a00e9fb9b4445e8990722 45669a3117fc93acc09a00e9fb9b4445e8990722 False
# flux-system jetstack-charts True Fetched revision: 7bad937cc82a012c9ee7d7a472d7bd66b48dc471 7bad937cc82a012c9ee7d7a472d7bd66b48dc471 False
# flux-system k8s-at-home-charts True Fetched revision: 1b24af9c5a1e3da91618d597f58f46a57c70dc13 1b24af9c5a1e3da91618d597f58f46a57c70dc13 False
Flux has a wide range of CLI options available be sure to run flux --help
to view more!
-
Renovate is a very useful tool that when configured will start to create PRs in your Github repository when Docker images, Helm charts or anything else that can be tracked has a newer version. The configuration for renovate is located here.
-
system-upgrade-controller will watch for new k3s releases and upgrade your nodes when new releases are found.
There's also a couple Github workflows included in this repository that will help automate some processes.
- Flux upgrade schedule - workflow to upgrade Flux.
- Renovate schedule - workflow to annotate
HelmRelease
's which allows Renovate to track Helm chart versions.
At some point you may want to update your Git repository with some commit from this repository. The following is one method to achieve this.
- Add this repository as an additional remote
git remote add tmpl [email protected]:k8s-at-home/template-cluster-k3s.git
- Fetch all the branches
git fetch tmpl
- List the commits from this repository
git log tmpl/main
- Pick the commit you want to bring over to your repository
git cherry-pick ce67a3c
- Push the changes up to your Git remote
git push origin main
The world is your cluster, try installing another application or if you have a NAS and want storage back by that check out the helm charts for democratic-csi, csi-driver-nfs or nfs-subdir-external-provisioner.
If you plan on exposing your ingress to the world from your home. Checkout our rough guide to run a k8s CronJob
to update DDNS.
Big shout out to all the authors and contributors to the projects that we are using in this repository.