Skip to content

Commit

Permalink
Fix some implicit conversions in filter_bench (facebook#5894)
Browse files Browse the repository at this point in the history
Summary:
Fixed some spots where converting size_t or uint_fast32_t to
uint32_t. Wrapped mt19937 in a new Random32 class to avoid future
such traps.

NB: I tried using Random32::Uniform (std::uniform_int_distribution) in
filter_bench instead of fastrange, but that more than doubled the dry
run time! So I added fastrange as Random32::Uniformish. ;)
Pull Request resolved: facebook#5894

Test Plan: USE_CLANG=1 build, and manual re-run filter_bench

Differential Revision: D17825131

Pulled By: pdillinger

fbshipit-source-id: 68feee333b5f8193c084ded760e3d6679b405ecd
  • Loading branch information
pdillinger authored and facebook-github-bot committed Oct 9, 2019
1 parent 167cdc9 commit 90e285e
Show file tree
Hide file tree
Showing 2 changed files with 71 additions and 25 deletions.
50 changes: 26 additions & 24 deletions util/filter_bench.cc
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,6 @@ int main() {

#include <cinttypes>
#include <iostream>
#include <random>
#include <vector>

#include "port/port.h"
Expand All @@ -23,13 +22,14 @@ int main() {
#include "table/block_based/mock_block_based_table.h"
#include "util/gflags_compat.h"
#include "util/hash.h"
#include "util/random.h"
#include "util/stop_watch.h"

using GFLAGS_NAMESPACE::ParseCommandLineFlags;
using GFLAGS_NAMESPACE::RegisterFlagValidator;
using GFLAGS_NAMESPACE::SetUsageMessage;

DEFINE_int64(seed, 0, "Seed for random number generators");
DEFINE_uint32(seed, 0, "Seed for random number generators");

DEFINE_double(working_mem_size_mb, 200,
"MB of memory to get up to among all filters");
Expand Down Expand Up @@ -70,6 +70,7 @@ using rocksdb::fastrange32;
using rocksdb::FilterBitsBuilder;
using rocksdb::FilterBitsReader;
using rocksdb::FullFilterBlockReader;
using rocksdb::Random32;
using rocksdb::Slice;
using rocksdb::mock::MockBlockBasedTableTester;

Expand Down Expand Up @@ -154,7 +155,7 @@ const char *TestModeToString(TestMode tm) {
struct FilterBench : public MockBlockBasedTableTester {
std::vector<KeyMaker> kms_;
std::vector<FilterInfo> infos_;
std::mt19937 random_;
Random32 random_;

FilterBench()
: MockBlockBasedTableTester(
Expand Down Expand Up @@ -193,9 +194,10 @@ void FilterBench::Go() {
rocksdb::StopWatchNano timer(rocksdb::Env::Default(), true);

while (total_memory_used < 1024 * 1024 * FLAGS_working_mem_size_mb) {
uint32_t filter_id = random_();
uint32_t filter_id = random_.Next();
uint32_t keys_to_add = FLAGS_average_keys_per_filter +
(random_() & variance_mask) - (variance_mask / 2);
(random_.Next() & variance_mask) -
(variance_mask / 2);
for (uint32_t i = 0; i < keys_to_add; ++i) {
builder->AddKey(kms_[0].Get(filter_id, i));
}
Expand Down Expand Up @@ -256,19 +258,19 @@ void FilterBench::Go() {

std::cout << "----------------------------" << std::endl;
std::cout << "Inside queries..." << std::endl;
random_.seed(FLAGS_seed + 1);
random_.Seed(FLAGS_seed + 1);
RandomQueryTest(/*inside*/ true, /*dry_run*/ true, kRandomFilter);
for (TestMode tm : testModes) {
random_.seed(FLAGS_seed + 1);
random_.Seed(FLAGS_seed + 1);
RandomQueryTest(/*inside*/ true, /*dry_run*/ false, tm);
}

std::cout << "----------------------------" << std::endl;
std::cout << "Outside queries..." << std::endl;
random_.seed(FLAGS_seed + 2);
random_.Seed(FLAGS_seed + 2);
RandomQueryTest(/*inside*/ false, /*dry_run*/ true, kRandomFilter);
for (TestMode tm : testModes) {
random_.seed(FLAGS_seed + 2);
random_.Seed(FLAGS_seed + 2);
RandomQueryTest(/*inside*/ false, /*dry_run*/ false, tm);
}

Expand All @@ -282,13 +284,14 @@ void FilterBench::RandomQueryTest(bool inside, bool dry_run, TestMode mode) {
info.false_positives_ = 0;
}

uint32_t num_infos = static_cast<uint32_t>(infos_.size());
uint32_t dry_run_hash = 0;
uint64_t max_queries =
static_cast<uint64_t>(FLAGS_m_queries * 1000000 + 0.50);
// Some filters may be considered secondary in order to implement skewed
// queries. num_primary_filters is the number that are to be treated as
// equal, and any remainder will be treated as secondary.
size_t num_primary_filters = infos_.size();
uint32_t num_primary_filters = num_infos;
// The proportion (when divided by 2^32 - 1) of filter queries going to
// the primary filters (default = all). The remainder of queries are
// against secondary filters.
Expand All @@ -307,14 +310,14 @@ void FilterBench::RandomQueryTest(bool inside, bool dry_run, TestMode mode) {
// to 20% of filters
num_primary_filters = (num_primary_filters + 4) / 5;
}
size_t batch_size = 1;
uint32_t batch_size = 1;
std::unique_ptr<Slice *[]> batch_slices;
std::unique_ptr<bool[]> batch_results;
if (mode == kBatchPrepared || mode == kBatchUnprepared) {
batch_size = kms_.size();
batch_size = static_cast<uint32_t>(kms_.size());
batch_slices.reset(new Slice *[batch_size]);
batch_results.reset(new bool[batch_size]);
for (size_t i = 0; i < batch_size; ++i) {
for (uint32_t i = 0; i < batch_size; ++i) {
batch_slices[i] = &kms_[i].slice_;
batch_results[i] = false;
}
Expand All @@ -324,39 +327,38 @@ void FilterBench::RandomQueryTest(bool inside, bool dry_run, TestMode mode) {

for (uint64_t q = 0; q < max_queries; q += batch_size) {
uint32_t filter_index;
if (random_() <= primary_filter_threshold) {
filter_index = fastrange32(num_primary_filters, random_());
if (random_.Next() <= primary_filter_threshold) {
filter_index = random_.Uniformish(num_primary_filters);
} else {
// secondary
filter_index =
num_primary_filters +
fastrange32(infos_.size() - num_primary_filters, random_());
filter_index = num_primary_filters +
random_.Uniformish(num_infos - num_primary_filters);
}
FilterInfo &info = infos_[filter_index];
for (size_t i = 0; i < batch_size; ++i) {
for (uint32_t i = 0; i < batch_size; ++i) {
if (inside) {
kms_[i].Get(info.filter_id_, fastrange32(info.keys_added_, random_()));
kms_[i].Get(info.filter_id_, random_.Uniformish(info.keys_added_));
} else {
kms_[i].Get(info.filter_id_, random_() | 0x80000000);
kms_[i].Get(info.filter_id_, random_.Next() | uint32_t{0x80000000});
info.outside_queries_++;
}
}
// TODO: implement batched interface to full block reader
if (mode == kBatchPrepared && !dry_run && !FLAGS_use_full_block_reader) {
for (size_t i = 0; i < batch_size; ++i) {
for (uint32_t i = 0; i < batch_size; ++i) {
batch_results[i] = false;
}
info.reader_->MayMatch(batch_size, batch_slices.get(),
batch_results.get());
for (size_t i = 0; i < batch_size; ++i) {
for (uint32_t i = 0; i < batch_size; ++i) {
if (inside) {
ALWAYS_ASSERT(batch_results[i]);
} else {
info.false_positives_ += batch_results[i];
}
}
} else {
for (size_t i = 0; i < batch_size; ++i) {
for (uint32_t i = 0; i < batch_size; ++i) {
if (dry_run) {
dry_run_hash ^= rocksdb::BloomHash(kms_[i].slice_);
} else {
Expand Down
46 changes: 45 additions & 1 deletion util/random.h
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,51 @@ class Random {
static Random* GetTLSInstance();
};

// A simple 64bit random number generator based on std::mt19937_64
// A good 32-bit random number generator based on std::mt19937.
// This exists in part to avoid compiler variance in warning about coercing
// uint_fast32_t from mt19937 to uint32_t.
class Random32 {
private:
std::mt19937 generator_;

public:
explicit Random32(uint32_t s) : generator_(s) {}

// Generates the next random number
uint32_t Next() { return static_cast<uint32_t>(generator_()); }

// Returns a uniformly distributed value in the range [0..n-1]
// REQUIRES: n > 0
uint32_t Uniform(uint32_t n) {
return static_cast<uint32_t>(
std::uniform_int_distribution<std::mt19937::result_type>(
0, n - 1)(generator_));
}

// Returns an *almost* uniformly distributed value in the range [0..n-1].
// Much faster than Uniform().
// REQUIRES: n > 0
uint32_t Uniformish(uint32_t n) {
// fastrange (without the header)
return static_cast<uint32_t>((uint64_t(generator_()) * uint64_t(n)) >> 32);
}

// Randomly returns true ~"1/n" of the time, and false otherwise.
// REQUIRES: n > 0
bool OneIn(uint32_t n) { return Uniform(n) == 0; }

// Skewed: pick "base" uniformly from range [0,max_log] and then
// return "base" random bits. The effect is to pick a number in the
// range [0,2^max_log-1] with exponential bias towards smaller numbers.
uint32_t Skewed(int max_log) {
return Uniform(uint32_t{1} << Uniform(max_log + 1));
}

// Reset the seed of the generator to the given value
void Seed(uint32_t new_seed) { generator_.seed(new_seed); }
};

// A good 64-bit random number generator based on std::mt19937_64
class Random64 {
private:
std::mt19937_64 generator_;
Expand Down

0 comments on commit 90e285e

Please sign in to comment.