Skip to content

Implementation of darkflow on traffic sign detection and classification

License

Notifications You must be signed in to change notification settings

suhasdarsi/Traffic_sign_detection_YOLO

 
 

Repository files navigation

Traffic_sign_detection_YOLO

Detecting traffic signs using YOLO algorithm IMAGE ALT TEXT HERE

Clone the repository

git clone https://github.com/AmeyaWagh/Traffic_sign_detection_YOLO.git

Goto darkflow and build cython extension by running

cd darkflow
python3 setup.py build_ext --inplace

Then build globally with

pip install .

Check if "flow" works with "flow --h"

flow --h

Go back and create a new folder called "dataset" in base directory. Download and extract LISA dataset into the dataset folder

cd ..
mkdir dataset

run datasetGenerator.py

python3 datasetGenerator.py

goto darkflow and create "built_graph" directory inside darkflow if you are not training, and save pb and meta files there (pb and meta files can be downloaded here "https://drive.google.com/file/d/171AyNg4zSmz4OXhfcdgU2cxrqTfIV2BD/view?usp=sharing")

cd darkflow
mkdir built_graph

set GPU to 0.0 in the config3.json if not using GPU

{
	"yoloConfig":{
		"pbLoad": "./built_graph/tiny-yolo-voc27.pb", 
		"metaLoad": "./built_graph/tiny-yolo-voc27.meta",
		"labels":"../labels.txt",
		"threshold":0.01, 
		"gpu":0.7
	},
	"dataset":"./dataset"	
}

Run YOLO

./runYOLO

Training

cd darkflow
./trainYOLO

About

Implementation of darkflow on traffic sign detection and classification

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.7%
  • Shell 0.3%