PipelineAI Home
PipelineAI Products
PipelineAI 24x7 Global Support
PipelineAI Workshop (TensorFlow + Spark + GPU)
PipelineAI + Google Cloud + GPU
PipelineAI Core Features
Each model is built into a separate Docker image with the appropriate Python, C++, and Java/Scala Runtime Libraries for training or prediction.
Use the same Docker Image from Local Laptop to Production to avoid dependency surprises.
Supported Model Types
Click HERE to view model samples for the following:
- Scikit-Learn
- TensorFlow
- Keras
- Spark ML (formerly called Spark MLlib)
- XgBoost
- Custom Java
- Custom Python
- Ensembles
- Python
- Java
- Scala
- C++
- Nvidia TensorRT
- Install Docker
- Install Miniconda with Python 2 or 3 (Preferred) Support
Note: This command line interface requires Python 2 or 3 and Docker as detailed above.
pip install cli-pipeline==1.4.6 --ignore-installed --no-cache -U
pipeline version
### EXPECTED OUTPUT ###
cli_version: 1.4.x <-- MAKE SURE THIS MATCHES THE VERSION YOU INSTALLED ABOVE
api_version: v1
default build type: docker
default build context path: . => ...
default train base image: docker.io/pipelineai/train:cpu-1.4.0
default predict base image: docker.io/pipelineai/predict:cpu-1.4.0
capabilities_enabled: ['train-server-*', 'predict-server-*', 'predict-test-http', 'version']
capabilities_available: ['train-cluster-*', 'predict-cluster-*', 'predict-test-stream', 'optimize-*', 'experiment-*']
Email [email protected] to enable the advanced capabilities.
pipeline
### EXPECTED OUTPUT ###
Usage: pipeline <-- This List of CLI Commands
(Enterprise) pipeline experiment-add <-- Add Cluster to Experiment
pipeline experiment-start <-- Start Experiment
pipeline experiment-status <-- Experiment Status (Bandit-based Rewards)
pipeline experiment-stop <-- Stop Experiment
pipeline experiment-update <-- Update Experiment (Bandit-based Routing)
(Standalone) pipeline optimize <-- Perform Model and Runtime Optimizations
(Community) pipeline predict-test-http <-- Predict Http-based Model Server or Cluster
pipeline predict-test-stream <-- Predict Kafka-based Model Server or Cluster
(Enterprise) pipeline predict-cluster-autoscale <-- Configure AutoScaling for Model Cluster
pipeline predict-cluster-connect <-- Create Secure Tunnel to Model Cluster
pipeline predict-cluster-describe <-- Describe Model Cluster
pipeline predict-cluster-logs <-- View Model Cluster Logs
pipeline predict-cluster-scale <-- Scale Model Cluster
pipeline predict-cluster-shell <-- Shell into Model Cluster
pipeline predict-cluster-start <-- Start Model Cluster from Docker Registry
pipeline predict-cluster-status <-- Status of Model Cluster
pipeline predict-cluster-stop <-- Stop Model Cluster
(Community) pipeline predict-server-build <-- Build Model Server
pipeline predict-server-logs <-- View Model Server Logs
pipeline predict-server-pull <-- Pull Model Server from Docker Registry
pipeline predict-server-push <-- Push Model Server to Docker Registry
pipeline predict-server-shell <-- Shell into Model Server (Debugging)
pipeline predict-server-start <-- Start Model Server
pipeline predict-server-stop <-- Stop Model Server
(Enterprise) pipeline train-cluster-connect <-- Create Secure Tunnel to Training Cluster
pipeline train-cluster-describe <-- Describe Training Cluster
pipeline train-cluster-logs <-- View Training Cluster Logs
pipeline train-cluster-scale <-- Scale Training Cluster
pipeline train-cluster-shell <-- Shell into Training Cluster
pipeline train-cluster-start <-- Start Training Cluster from Docker Registry
pipeline train-cluster-status <-- Status of Training Cluster
pipeline train-cluster-stop <-- Stop Training Cluster
(Standalone) pipeline train-server-build <-- Build Training Server
pipeline train-server-logs <-- View Training Server Logs
pipeline train-server-pull <-- Pull Training Server from Docker Registry
pipeline train-server-push <-- Push Training Server to Docker Registry
pipeline train-server-shell <-- Shell into Training Server (Debugging)
pipeline train-server-start <-- Start Training Server
pipeline train-server-stop <-- Stop Training Server
(Community) pipeline version <-- View This CLI Version
git clone https://github.com/PipelineAI/models
cd models
Note: Master may be unstable. See Releases Tab for stable releases.
git checkout master
ls -l ./tensorflow/census
### EXPECTED OUTPUT ###
...
pipeline_conda_environment.yml <-- Required. Sets up the conda environment
pipeline_train.py <-- Required. `main()` is required. Args passed through `--train-args`
...
pipeline train-server-build --model-runtime=tfserving --model-type=tensorflow --model-name=census --model-tag=v1 --model-path=./tensorflow/census
Note the following:
--train-args
is a single argument passed into thepipeline_train.py
. Therefore, you must escape spaces (\
) between arguments.--input-path
and--output-path
are relative to the current working directory (outside the Docker container) and will be mapped as internal directories inside the Docker container.--train-files
and--eval-files
are relative to--input-path
inside the Docker container.- Models, logs, and event are written to
--output-path
(or a subdirectory within). These will be available outside of the Docker container. - To prevent overwriting the output of a previous run, you should update the
--output-path
between calls - or create a new unique subfolder with--output-path
in yourpipeline_train.py
(ie. timestamp). See examples below.
(We are working on making these more intuitive.)
pipeline train-server-start --model-runtime=tfserving --model-type=tensorflow --model-name=census --model-tag=v1 --input-path=./tensorflow/census/data/ --output-path=./tensorflow/census/versions --train-args="--train-files=train/adult.data.csv\ --eval-files=eval/adult.test.csv\ --num-epochs=2\ --learning-rate=0.025"
Note: If you see the error below, run docker rm -f train-tfserving-tensorflow-census-v1
first.
docker: Error response from daemon: Conflict. The container name "/train-tfserving-tensorflow-census-v1" is already in use by container.
pipeline train-server-logs --model-runtime=tfserving --model-type=tensorflow --model-name=census --model-tag=v1
pipeline train-server-shell --model-runtime=tfserving --model-type=tensorflow --model-name=census --model-tag=v1
http://localhost:6007
pipeline train-server-stop --model-runtime=tfserving --model-type=tensorflow --model-name=census --model-tag=v1
ls -l ./tensorflow/mnist
### EXPECTED OUTPUT ###
...
pipeline_conda_environment.yml <-- Required. Sets up the conda environment
pipeline_predict.py <-- Required. `predict(request: bytes) -> bytes` is required
versions/ <-- Optional. TensorFlow Serving requires this directory
...
ls -l tensorflow/mnist/versions/
### EXPECTED OUTPUT ###
...
drwxr-xr-x 11 cfregly staff 352 Nov 20 12:07 1511176042
drwxr-xr-x 11 cfregly staff 352 Nov 20 12:18 1511176681
drwxr-xr-x 11 cfregly staff 352 Nov 20 12:18 1511176731 <-- Serves the highest (latest) version
This command bundles the TensorFlow runtime with the model.
pipeline predict-server-build --model-runtime=tfserving --model-type=tensorflow --model-name=mnist --model-tag=v1 --model-path=./tensorflow/mnist/
model-path
must be a relative path.
pipeline predict-server-start --model-runtime=tfserving --model-type=tensorflow --model-name=mnist --model-tag=v1 --memory-limit=2G
If the port is already allocated, run docker ps
, then docker rm -f <container-id>
.
Note: Only the predict()
method is required. Everything else is optional.
cat ./tensorflow/mnist/pipeline_predict.py
### EXPECTED OUTPUT ###
import os
import logging
from pipeline_model import TensorFlowServingModel <-- Optional. Wraps TensorFlow Serving
from pipeline_monitor import prometheus_monitor as monitor <-- Optional. Monitor runtime metrics
from pipeline_logger import log <-- Optional. Log to console, file, kafka
...
__all__ = ['predict'] <-- Optional. Being a good Python citizen.
...
def _initialize_upon_import() -> TensorFlowServingModel: <-- Optional. Called once at server startup
return TensorFlowServingModel(host='localhost', <-- Optional. Wraps TensorFlow Serving
port=9000,
model_name=os.environ['PIPELINE_MODEL_NAME'],
inputs_name='inputs', <-- Optional. TensorFlow SignatureDef inputs
outputs_name='outputs', <-- Optional. TensorFlow SignatureDef outputs
timeout=100) <-- Optional. TensorFlow Serving timeout
_model = _initialize_upon_import() <-- Optional. Called once upon server startup
_labels = {'model_runtime': os.environ['PIPELINE_MODEL_RUNTIME'], <-- Optional. Tag metrics
'model_type': os.environ['PIPELINE_MODEL_TYPE'],
'model_name': os.environ['PIPELINE_MODEL_NAME'],
'model_tag': os.environ['PIPELINE_MODEL_TAG']}
_logger = logging.getLogger('predict-logger') <-- Optional. Standard Python logging
@log(labels=_labels, logger=_logger) <-- Optional. Sample and compare predictions
def predict(request: bytes) -> bytes: <-- Required. Called on every prediction
with monitor(labels=_labels, name="transform_request"): <-- Optional. Expose fine-grained metrics
transformed_request = _transform_request(request) <-- Optional. Transform input (json) into TensorFlow (tensor)
with monitor(labels=_labels, name="predict"):
predictions = _model.predict(transformed_request) <-- Optional. Calls _model.predict()
with monitor(labels=_labels, name="transform_response"):
transformed_response = _transform_response(predictions) <-- Optional. Transform TensorFlow (tensor) into output (json)
return transformed_response <-- Required. Returns the predicted value(s)
...
Wait for the model runtime to settle...
pipeline predict-server-logs --model-runtime=tfserving --model-type=tensorflow --model-name=mnist --model-tag=v1
### EXPECTED OUTPUT ###
...
2017-10-10 03:56:00.695 INFO 121 --- [ run-main-0] i.p.predict.jvm.PredictionServiceMain$ : Started PredictionServiceMain. in 7.566 seconds (JVM running for 20.739)
[debug] Thread run-main-0 exited.
[debug] Waiting for thread container-0 to terminate.
...
INFO[0050] Completed initial partial maintenance sweep through 4 in-memory fingerprints in 40.002264633s. source="storage.go:1398"
...
You need to ctrl-c
out of the log viewing before proceeding.
The first call takes 10-20x longer than subsequent calls for lazy initialization and warm-up. Predict again if you see a "fallback" message.
You may see 502 Bad Gateway
if you predict too quickly. Let the server startup completely, then predict again.
Before proceeding, make sure you hit ctrl-c
after viewing the logs in the previous step.
pipeline predict-test-http --model-runtime=tfserving --model-type=tensorflow --model-name=mnist --model-tag=v1 --predict-server-url=http://localhost:6969 --test-request-path=./tensorflow/mnist/data/test_request.json
### IGNORE THIS ERROR. WAIT A MINUTE AND RE-RUN THE COMMAND ABOVE ###
...
'<html>\r\n<head><title>502 Bad Gateway</title></head></html>
...
### Expected Output ###
...
{"outputs": [0.0022526539396494627, 2.63791100074684e-10, 0.4638307988643646, 0.21909376978874207, 3.2985670372909226e-07, 0.29357224702835083, 0.00019597385835368186, 5.230629176367074e-05, 0.020996594801545143, 5.426473762781825e-06]}
### Formatted Output ###
Digit Confidence
===== ==========
0 0.0022526539396494627
1 2.63791100074684e-10
2 0.4638307988643646 <-- Prediction
3 0.21909376978874207
4 3.2985670372909226e-07
5 0.29357224702835083
6 0.00019597385835368186
7 5.230629176367074e-05
8 0.020996594801545143
9 5.426473762781825e-06
pipeline predict-test-http --model-runtime=tfserving --model-type=tensorflow --model-name=mnist --model-tag=v1 --predict-server-url=http://localhost:6969 --test-request-path=./tensorflow/mnist/data/test_request.json --test-request-concurrency=100
Use the REST API to POST a JSON document representing the number 2.
curl -X POST -H "Content-Type: application/json" \
-d '{"image": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05098039656877518, 0.529411792755127, 0.3960784673690796, 0.572549045085907, 0.572549045085907, 0.847058892250061, 0.8156863451004028, 0.9960784912109375, 1.0, 1.0, 0.9960784912109375, 0.5960784554481506, 0.027450982481241226, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.32156863808631897, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.7882353663444519, 0.11764706671237946, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.32156863808631897, 0.9921569228172302, 0.988235354423523, 0.7921569347381592, 0.9450981020927429, 0.545098066329956, 0.21568629145622253, 0.3450980484485626, 0.45098042488098145, 0.125490203499794, 0.125490203499794, 0.03921568766236305, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.32156863808631897, 0.9921569228172302, 0.803921639919281, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6352941393852234, 0.9921569228172302, 0.803921639919281, 0.24705883860588074, 0.3490196168422699, 0.6509804129600525, 0.32156863808631897, 0.32156863808631897, 0.1098039299249649, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.007843137718737125, 0.7529412508010864, 0.9921569228172302, 0.9725490808486938, 0.9686275124549866, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.8274510502815247, 0.29019609093666077, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2549019753932953, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.847058892250061, 0.027450982481241226, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5921568870544434, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.7333333492279053, 0.44705885648727417, 0.23137256503105164, 0.23137256503105164, 0.4784314036369324, 0.9921569228172302, 0.9921569228172302, 0.03921568766236305, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5568627715110779, 0.9568628072738647, 0.7098039388656616, 0.08235294371843338, 0.019607843831181526, 0.0, 0.0, 0.0, 0.08627451211214066, 0.9921569228172302, 0.9921569228172302, 0.43137258291244507, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.15294118225574493, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08627451211214066, 0.9921569228172302, 0.9921569228172302, 0.46666669845581055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08627451211214066, 0.9921569228172302, 0.9921569228172302, 0.46666669845581055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08627451211214066, 0.9921569228172302, 0.9921569228172302, 0.46666669845581055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1882353127002716, 0.9921569228172302, 0.9921569228172302, 0.46666669845581055, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6705882549285889, 0.9921569228172302, 0.9921569228172302, 0.12156863510608673, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2392157018184662, 0.9647059440612793, 0.9921569228172302, 0.6274510025978088, 0.003921568859368563, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08235294371843338, 0.44705885648727417, 0.16470588743686676, 0.0, 0.0, 0.2549019753932953, 0.9294118285179138, 0.9921569228172302, 0.9333333969116211, 0.27450981736183167, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4941176772117615, 0.9529412388801575, 0.0, 0.0, 0.5803921818733215, 0.9333333969116211, 0.9921569228172302, 0.9921569228172302, 0.4078431725502014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7411764860153198, 0.9764706492424011, 0.5529412031173706, 0.8784314393997192, 0.9921569228172302, 0.9921569228172302, 0.9490196704864502, 0.43529415130615234, 0.007843137718737125, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6235294342041016, 0.9921569228172302, 0.9921569228172302, 0.9921569228172302, 0.9764706492424011, 0.6274510025978088, 0.1882353127002716, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.18431372940540314, 0.5882353186607361, 0.729411780834198, 0.5686274766921997, 0.3529411852359772, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}' \
http://localhost:6969/api/v1/model/predict/tensorflow/mnist/v1 \
-w "\n\n"
### Expected Output ###
{"outputs": [0.0022526539396494627, 2.63791100074684e-10, 0.4638307988643646, 0.21909376978874207, 3.2985670372909226e-07, 0.29357224702835083, 0.00019597385835368186, 5.230629176367074e-05, 0.020996594801545143, 5.426473762781825e-06]}
### Formatted Output
Digit Confidence
===== ==========
0 0.0022526539396494627
1 2.63791100074684e-10
2 0.4638307988643646 <-- Prediction
3 0.21909376978874207
4 3.2985670372909226e-07
5 0.29357224702835083
6 0.00019597385835368186
7 5.230629176367074e-05
8 0.020996594801545143
9 5.426473762781825e-06
Re-run the Prediction REST API while watching the following dashboard URL:
http://localhost:6969/hystrix-dashboard/monitor/monitor.html?streams=%5B%7B%22name%22%3A%22%22%2C%22stream%22%3A%22http%3A%2F%2Flocalhost%3A6969%2Fhystrix.stream%22%2C%22auth%22%3A%22%22%2C%22delay%22%3A%22%22%7D%5D
Re-run the Prediction REST API while watching the following detailed metrics dashboard URL:
http://localhost:3000/
Username/Password: admin/admin
Set Type
to Prometheues
.
Set Url
to http://localhost:9090
.
Set Access
to direct
.
Click Save & Test
.
Click Dashboards -> Import
upper-left menu drop-down.
Copy and Paste THIS raw json file into the paste JSON
box.
Select the Prometheus-based data source that you setup above and click Import
.
Change the Date Range in the upper right to Last 5m
and the Refresh Every to 5s
.
Create additional PipelineAI Prediction widgets using THIS guide to the Prometheus Syntax.
pipeline predict-server-stop --model-type=tensorflow --model-name=mnist --model-tag=v1
Click HERE to compare PipelineAI Products.