Skip to content

Commit

Permalink
Merge tag 'for-linus-20140610' of git://git.infradead.org/linux-mtd
Browse files Browse the repository at this point in the history
Pull MTD updates from Brian Norris:
 - refactor m25p80.c driver for use as a general SPI NOR framework for
   other drivers which may speak to SPI NOR flash without providing full
   SPI support (i.e., not part of drivers/spi/)
 - new Freescale QuadSPI driver (utilizing new SPI NOR framework)
 - updates for the STMicro "FSM" SPI NOR driver
 - fix sync/flush behavior on mtd_blkdevs
 - fixup subpage write support on a few NAND drivers
 - correct the MTD OOB test for odd-sized OOB areas
 - add BCH-16 support for OMAP NAND
 - fix warnings and trivial refactoring
 - utilize new ECC DT bindings in pxa3xx NAND driver
 - new LPDDR NVM driver
 - address a few assorted bugs caught by Coverity
 - add new imx6sx support for GPMI NAND
 - use a bounce buffer for NAND when non-DMA-able buffers are used

* tag 'for-linus-20140610' of git://git.infradead.org/linux-mtd: (77 commits)
  mtd: gpmi: add gpmi support for imx6sx
  mtd: maps: remove check for CONFIG_MTD_SUPERH_RESERVE
  mtd: bf5xx_nand: use the managed version of kzalloc
  mtd: pxa3xx_nand: make the driver work on big-endian systems
  mtd: nand: omap: fix omap_calculate_ecc_bch() for-loop error
  mtd: nand: r852: correct write_buf loop bounds
  mtd: nand_bbt: handle error case for nand_create_badblock_pattern()
  mtd: nand_bbt: remove unused variable
  mtd: maps: sc520cdp: fix warnings
  mtd: slram: fix unused variable warning
  mtd: pfow: remove unused variable
  mtd: lpddr: fix Kconfig dependency, for I/O accessors
  mtd: nand: pxa3xx: Add supported ECC strength and step size to the DT binding
  mtd: nand: pxa3xx: Use ECC strength and step size devicetree binding
  mtd: nand: pxa3xx: Clean pxa_ecc_init() error handling
  mtd: nand: Warn the user if the selected ECC strength is too weak
  mtd: nand: omap: Documentation: How to select correct ECC scheme for your device ?
  mtd: nand: omap: add support for BCH16_ECC - NAND driver updates
  mtd: nand: omap: add support for BCH16_ECC - ELM driver updates
  mtd: nand: omap: add support for BCH16_ECC - GPMC driver updates
  ...
  • Loading branch information
torvalds committed Jun 11, 2014
2 parents 8d0304e + f1900c7 commit e413a19
Show file tree
Hide file tree
Showing 54 changed files with 3,759 additions and 1,618 deletions.
35 changes: 35 additions & 0 deletions Documentation/devicetree/bindings/mtd/fsl-quadspi.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
* Freescale Quad Serial Peripheral Interface(QuadSPI)

Required properties:
- compatible : Should be "fsl,vf610-qspi"
- reg : the first contains the register location and length,
the second contains the memory mapping address and length
- reg-names: Should contain the reg names "QuadSPI" and "QuadSPI-memory"
- interrupts : Should contain the interrupt for the device
- clocks : The clocks needed by the QuadSPI controller
- clock-names : the name of the clocks

Optional properties:
- fsl,qspi-has-second-chip: The controller has two buses, bus A and bus B.
Each bus can be connected with two NOR flashes.
Most of the time, each bus only has one NOR flash
connected, this is the default case.
But if there are two NOR flashes connected to the
bus, you should enable this property.
(Please check the board's schematic.)

Example:

qspi0: quadspi@40044000 {
compatible = "fsl,vf610-qspi";
reg = <0x40044000 0x1000>, <0x20000000 0x10000000>;
reg-names = "QuadSPI", "QuadSPI-memory";
interrupts = <0 24 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clks VF610_CLK_QSPI0_EN>,
<&clks VF610_CLK_QSPI0>;
clock-names = "qspi_en", "qspi";

flash0: s25fl128s@0 {
....
};
};
45 changes: 45 additions & 0 deletions Documentation/devicetree/bindings/mtd/gpmc-nand.txt
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,8 @@ Optional properties:
"ham1" 1-bit Hamming ecc code
"bch4" 4-bit BCH ecc code
"bch8" 8-bit BCH ecc code
"bch16" 16-bit BCH ECC code
Refer below "How to select correct ECC scheme for your device ?"

- ti,nand-xfer-type: A string setting the data transfer type. One of:

Expand Down Expand Up @@ -90,3 +92,46 @@ Example for an AM33xx board:
};
};

How to select correct ECC scheme for your device ?
--------------------------------------------------
Higher ECC scheme usually means better protection against bit-flips and
increased system lifetime. However, selection of ECC scheme is dependent
on various other factors also like;

(1) support of built in hardware engines.
Some legacy OMAP SoC do not have ELM harware engine, so those SoC cannot
support ecc-schemes with hardware error-correction (BCHx_HW). However
such SoC can use ecc-schemes with software library for error-correction
(BCHx_HW_DETECTION_SW). The error correction capability with software
library remains equivalent to their hardware counter-part, but there is
slight CPU penalty when too many bit-flips are detected during reads.

(2) Device parameters like OOBSIZE.
Other factor which governs the selection of ecc-scheme is oob-size.
Higher ECC schemes require more OOB/Spare area to store ECC syndrome,
so the device should have enough free bytes available its OOB/Spare
area to accomodate ECC for entire page. In general following expression
helps in determining if given device can accomodate ECC syndrome:
"2 + (PAGESIZE / 512) * ECC_BYTES" >= OOBSIZE"
where
OOBSIZE number of bytes in OOB/spare area
PAGESIZE number of bytes in main-area of device page
ECC_BYTES number of ECC bytes generated to protect
512 bytes of data, which is:
'3' for HAM1_xx ecc schemes
'7' for BCH4_xx ecc schemes
'14' for BCH8_xx ecc schemes
'26' for BCH16_xx ecc schemes

Example(a): For a device with PAGESIZE = 2048 and OOBSIZE = 64 and
trying to use BCH16 (ECC_BYTES=26) ecc-scheme.
Number of ECC bytes per page = (2 + (2048 / 512) * 26) = 106 B
which is greater than capacity of NAND device (OOBSIZE=64)
Hence, BCH16 cannot be supported on given device. But it can
probably use lower ecc-schemes like BCH8.

Example(b): For a device with PAGESIZE = 2048 and OOBSIZE = 128 and
trying to use BCH16 (ECC_BYTES=26) ecc-scheme.
Number of ECC bytes per page = (2 + (2048 / 512) * 26) = 106 B
which can be accomodate in the OOB/Spare area of this device
(OOBSIZE=128). So this device can use BCH16 ecc-scheme.
4 changes: 2 additions & 2 deletions Documentation/devicetree/bindings/mtd/m25p80.txt
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,8 @@ Required properties:
representing partitions.
- compatible : Should be the manufacturer and the name of the chip. Bear in mind
the DT binding is not Linux-only, but in case of Linux, see the
"m25p_ids" table in drivers/mtd/devices/m25p80.c for the list of
supported chips.
"spi_nor_ids" table in drivers/mtd/spi-nor/spi-nor.c for the list
of supported chips.
- reg : Chip-Select number
- spi-max-frequency : Maximum frequency of the SPI bus the chip can operate at

Expand Down
8 changes: 8 additions & 0 deletions Documentation/devicetree/bindings/mtd/pxa3xx-nand.txt
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,14 @@ Optional properties:
- num-cs: Number of chipselect lines to usw
- nand-on-flash-bbt: boolean to enable on flash bbt option if
not present false
- nand-ecc-strength: number of bits to correct per ECC step
- nand-ecc-step-size: number of data bytes covered by a single ECC step

The following ECC strength and step size are currently supported:

- nand-ecc-strength = <1>, nand-ecc-step-size = <512>
- nand-ecc-strength = <4>, nand-ecc-step-size = <512>
- nand-ecc-strength = <8>, nand-ecc-step-size = <512>

Example:

Expand Down
62 changes: 62 additions & 0 deletions Documentation/mtd/spi-nor.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
SPI NOR framework
============================================

Part I - Why do we need this framework?
---------------------------------------

SPI bus controllers (drivers/spi/) only deal with streams of bytes; the bus
controller operates agnostic of the specific device attached. However, some
controllers (such as Freescale's QuadSPI controller) cannot easily handle
arbitrary streams of bytes, but rather are designed specifically for SPI NOR.

In particular, Freescale's QuadSPI controller must know the NOR commands to
find the right LUT sequence. Unfortunately, the SPI subsystem has no notion of
opcodes, addresses, or data payloads; a SPI controller simply knows to send or
receive bytes (Tx and Rx). Therefore, we must define a new layering scheme under
which the controller driver is aware of the opcodes, addressing, and other
details of the SPI NOR protocol.

Part II - How does the framework work?
--------------------------------------

This framework just adds a new layer between the MTD and the SPI bus driver.
With this new layer, the SPI NOR controller driver does not depend on the
m25p80 code anymore.

Before this framework, the layer is like:

MTD
------------------------
m25p80
------------------------
SPI bus driver
------------------------
SPI NOR chip

After this framework, the layer is like:
MTD
------------------------
SPI NOR framework
------------------------
m25p80
------------------------
SPI bus driver
------------------------
SPI NOR chip

With the SPI NOR controller driver (Freescale QuadSPI), it looks like:
MTD
------------------------
SPI NOR framework
------------------------
fsl-quadSPI
------------------------
SPI NOR chip

Part III - How can drivers use the framework?
---------------------------------------------

The main API is spi_nor_scan(). Before you call the hook, a driver should
initialize the necessary fields for spi_nor{}. Please see
drivers/mtd/spi-nor/spi-nor.c for detail. Please also refer to fsl-quadspi.c
when you want to write a new driver for a SPI NOR controller.
15 changes: 15 additions & 0 deletions arch/arm/mach-omap2/gpmc.c
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,9 @@
#define GPMC_ECC_BCH_RESULT_1 0x244 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_2 0x248 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_3 0x24c /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_4 0x300 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_5 0x304 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_6 0x308 /* not available on OMAP2 */

/* GPMC ECC control settings */
#define GPMC_ECC_CTRL_ECCCLEAR 0x100
Expand Down Expand Up @@ -677,6 +680,12 @@ void gpmc_update_nand_reg(struct gpmc_nand_regs *reg, int cs)
GPMC_BCH_SIZE * i;
reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 +
GPMC_BCH_SIZE * i;
reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 +
i * GPMC_BCH_SIZE;
reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 +
i * GPMC_BCH_SIZE;
reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 +
i * GPMC_BCH_SIZE;
}
}

Expand Down Expand Up @@ -1412,6 +1421,12 @@ static int gpmc_probe_nand_child(struct platform_device *pdev,
else
gpmc_nand_data->ecc_opt =
OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
else if (!strcmp(s, "bch16"))
if (gpmc_nand_data->elm_of_node)
gpmc_nand_data->ecc_opt =
OMAP_ECC_BCH16_CODE_HW;
else
pr_err("%s: BCH16 requires ELM support\n", __func__);
else
pr_err("%s: ti,nand-ecc-opt invalid value\n", __func__);

Expand Down
2 changes: 2 additions & 0 deletions drivers/mtd/Kconfig
Original file line number Diff line number Diff line change
Expand Up @@ -321,6 +321,8 @@ source "drivers/mtd/onenand/Kconfig"

source "drivers/mtd/lpddr/Kconfig"

source "drivers/mtd/spi-nor/Kconfig"

source "drivers/mtd/ubi/Kconfig"

endif # MTD
1 change: 1 addition & 0 deletions drivers/mtd/Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -32,4 +32,5 @@ inftl-objs := inftlcore.o inftlmount.o

obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/

obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/
obj-$(CONFIG_MTD_UBI) += ubi/
16 changes: 8 additions & 8 deletions drivers/mtd/chips/Kconfig
Original file line number Diff line number Diff line change
Expand Up @@ -169,33 +169,33 @@ config MTD_OTP
in the programming of OTP bits will waste them.

config MTD_CFI_INTELEXT
tristate "Support for Intel/Sharp flash chips"
tristate "Support for CFI command set 0001 (Intel/Sharp chips)"
depends on MTD_GEN_PROBE
select MTD_CFI_UTIL
help
The Common Flash Interface defines a number of different command
sets which a CFI-compliant chip may claim to implement. This code
provides support for one of those command sets, used on Intel
StrataFlash and other parts.
provides support for command set 0001, used on Intel StrataFlash
and other parts.

config MTD_CFI_AMDSTD
tristate "Support for AMD/Fujitsu/Spansion flash chips"
tristate "Support for CFI command set 0002 (AMD/Fujitsu/Spansion chips)"
depends on MTD_GEN_PROBE
select MTD_CFI_UTIL
help
The Common Flash Interface defines a number of different command
sets which a CFI-compliant chip may claim to implement. This code
provides support for one of those command sets, used on chips
including the AMD Am29LV320.
provides support for command set 0002, used on chips including
the AMD Am29LV320.

config MTD_CFI_STAA
tristate "Support for ST (Advanced Architecture) flash chips"
tristate "Support for CFI command set 0020 (ST (Advanced Architecture) chips)"
depends on MTD_GEN_PROBE
select MTD_CFI_UTIL
help
The Common Flash Interface defines a number of different command
sets which a CFI-compliant chip may claim to implement. This code
provides support for one of those command sets.
provides support for command set 0020.

config MTD_CFI_UTIL
tristate
Expand Down
4 changes: 2 additions & 2 deletions drivers/mtd/chips/cfi_cmdset_0020.c
Original file line number Diff line number Diff line change
Expand Up @@ -961,7 +961,7 @@ static int cfi_staa_erase_varsize(struct mtd_info *mtd,
chipnum++;

if (chipnum >= cfi->numchips)
break;
break;
}
}

Expand Down Expand Up @@ -1170,7 +1170,7 @@ static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
chipnum++;

if (chipnum >= cfi->numchips)
break;
break;
}
}
return 0;
Expand Down
2 changes: 1 addition & 1 deletion drivers/mtd/chips/cfi_util.c
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,7 @@ int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
chipnum++;

if (chipnum >= cfi->numchips)
break;
break;
}
}

Expand Down
4 changes: 2 additions & 2 deletions drivers/mtd/devices/Kconfig
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ config MTD_DATAFLASH_OTP

config MTD_M25P80
tristate "Support most SPI Flash chips (AT26DF, M25P, W25X, ...)"
depends on SPI_MASTER
depends on SPI_MASTER && MTD_SPI_NOR
help
This enables access to most modern SPI flash chips, used for
program and data storage. Series supported include Atmel AT26DF,
Expand Down Expand Up @@ -212,7 +212,7 @@ config MTD_DOCG3

config MTD_ST_SPI_FSM
tristate "ST Microelectronics SPI FSM Serial Flash Controller"
depends on ARM || SH
depends on ARCH_STI
help
This provides an MTD device driver for the ST Microelectronics
SPI Fast Sequence Mode (FSM) Serial Flash Controller and support
Expand Down
38 changes: 38 additions & 0 deletions drivers/mtd/devices/elm.c
Original file line number Diff line number Diff line change
Expand Up @@ -213,6 +213,28 @@ static void elm_load_syndrome(struct elm_info *info,
val = cpu_to_be32(*(u32 *) &ecc[0]) >> 12;
elm_write_reg(info, offset, val);
break;
case BCH16_ECC:
val = cpu_to_be32(*(u32 *) &ecc[22]);
elm_write_reg(info, offset, val);
offset += 4;
val = cpu_to_be32(*(u32 *) &ecc[18]);
elm_write_reg(info, offset, val);
offset += 4;
val = cpu_to_be32(*(u32 *) &ecc[14]);
elm_write_reg(info, offset, val);
offset += 4;
val = cpu_to_be32(*(u32 *) &ecc[10]);
elm_write_reg(info, offset, val);
offset += 4;
val = cpu_to_be32(*(u32 *) &ecc[6]);
elm_write_reg(info, offset, val);
offset += 4;
val = cpu_to_be32(*(u32 *) &ecc[2]);
elm_write_reg(info, offset, val);
offset += 4;
val = cpu_to_be32(*(u32 *) &ecc[0]) >> 16;
elm_write_reg(info, offset, val);
break;
default:
pr_err("invalid config bch_type\n");
}
Expand Down Expand Up @@ -418,6 +440,7 @@ static int elm_remove(struct platform_device *pdev)
return 0;
}

#ifdef CONFIG_PM_SLEEP
/**
* elm_context_save
* saves ELM configurations to preserve them across Hardware powered-down
Expand All @@ -435,6 +458,13 @@ static int elm_context_save(struct elm_info *info)
for (i = 0; i < ERROR_VECTOR_MAX; i++) {
offset = i * SYNDROME_FRAGMENT_REG_SIZE;
switch (bch_type) {
case BCH16_ECC:
regs->elm_syndrome_fragment_6[i] = elm_read_reg(info,
ELM_SYNDROME_FRAGMENT_6 + offset);
regs->elm_syndrome_fragment_5[i] = elm_read_reg(info,
ELM_SYNDROME_FRAGMENT_5 + offset);
regs->elm_syndrome_fragment_4[i] = elm_read_reg(info,
ELM_SYNDROME_FRAGMENT_4 + offset);
case BCH8_ECC:
regs->elm_syndrome_fragment_3[i] = elm_read_reg(info,
ELM_SYNDROME_FRAGMENT_3 + offset);
Expand Down Expand Up @@ -473,6 +503,13 @@ static int elm_context_restore(struct elm_info *info)
for (i = 0; i < ERROR_VECTOR_MAX; i++) {
offset = i * SYNDROME_FRAGMENT_REG_SIZE;
switch (bch_type) {
case BCH16_ECC:
elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset,
regs->elm_syndrome_fragment_6[i]);
elm_write_reg(info, ELM_SYNDROME_FRAGMENT_5 + offset,
regs->elm_syndrome_fragment_5[i]);
elm_write_reg(info, ELM_SYNDROME_FRAGMENT_4 + offset,
regs->elm_syndrome_fragment_4[i]);
case BCH8_ECC:
elm_write_reg(info, ELM_SYNDROME_FRAGMENT_3 + offset,
regs->elm_syndrome_fragment_3[i]);
Expand Down Expand Up @@ -509,6 +546,7 @@ static int elm_resume(struct device *dev)
elm_context_restore(info);
return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(elm_pm_ops, elm_suspend, elm_resume);

Expand Down
Loading

0 comments on commit e413a19

Please sign in to comment.