Skip to content

sumitbinnani/CarND-Capstone

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Team Details

Name: Carma AI

Members:

Original Readme

This is the project repo for the final project of the Udacity Self-Driving Car Nanodegree: Programming a Real Self-Driving Car. For more information about the project, see the project introduction here.

Native Installation

  • Be sure that your workstation is running Ubuntu 16.04 Xenial Xerus or Ubuntu 14.04 Trusty Tahir. Ubuntu downloads can be found here.

  • If using a Virtual Machine to install Ubuntu, use the following configuration as minimum:

    • 2 CPU
    • 2 GB system memory
    • 25 GB of free hard drive space

    The Udacity provided virtual machine has ROS and Dataspeed DBW already installed, so you can skip the next two steps if you are using this.

  • Follow these instructions to install ROS

  • Dataspeed DBW

  • Download the Udacity Simulator.

Docker Installation

Install Docker

Build the docker container

docker build . -t capstone

Run the docker file

docker run -p 127.0.0.1:4567:4567 -v $PWD:/capstone -v /tmp/log:/root/.ros/ --rm -it capstone

Usage

  1. Clone the project repository
git clone https://github.com/udacity/CarND-Capstone.git
  1. Install python dependencies
cd CarND-Capstone
pip install -r requirements.txt
  1. Make and run styx
cd ros
catkin_make
source devel/setup.sh
roslaunch launch/styx.launch
  1. Run the simulator

Real world testing

  1. Download training bag that was recorded on the Udacity self-driving car (a bag demonstraing the correct predictions in autonomous mode can be found here)
  2. Unzip the file
unzip traffic_light_bag_files.zip
  1. Play the bag file
rosbag play -l traffic_light_bag_files/loop_with_traffic_light.bag
  1. Launch your project in site mode
cd CarND-Capstone/ros
roslaunch launch/site.launch
  1. Confirm that traffic light detection works on real life images

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 44.7%
  • CMake 32.9%
  • C++ 21.7%
  • Other 0.7%