Skip to content

👖 Conformal Tights adds conformal prediction of coherent quantiles and intervals to any scikit-learn regressor or Darts forecaster

License

Notifications You must be signed in to change notification settings

superlinear-ai/conformal-tights

 
 

Repository files navigation

Open in Dev Containers Open in GitHub Codespaces

👖 Conformal Tights

Conformal Tights is a Python package that exports:

Features

  1. 🍬 Sklearn meta-estimator: add conformal prediction of quantiles and intervals to any scikit-learn regressor
  2. 🔮 Darts forecaster: add conformally calibrated probabilistic forecasting to any scikit-learn regressor
  3. 🌡️ Conformally calibrated: accurate quantiles, and intervals with reliable coverage
  4. 🚦 Coherent quantiles: quantiles increase monotonically instead of crossing each other
  5. 👖 Tight quantiles: selects the lowest dispersion that provides the desired coverage
  6. 🎁 Data efficient: requires only a small number of calibration examples to fit
  7. 🐼 Pandas support: optionally predict on DataFrames and receive DataFrame output

Using

Quick links

  1. Installing
  2. Predicting quantiles
  3. Predicting intervals
  4. Forecasting time series

Installing

pip install conformal-tights

Predicting quantiles

Conformal Tights exports a meta-estimator called ConformalCoherentQuantileRegressor that you can use to equip any scikit-learn regressor with a predict_quantiles method that predicts conformally calibrated quantiles. Example usage:

from conformal_tights import ConformalCoherentQuantileRegressor
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor

# Fetch dataset and split in train and test
X, y = fetch_openml("ames_housing", version=1, return_X_y=True, as_frame=True, parser="auto")
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=42)

# Create a regressor, equip it with conformal prediction, and fit on the train set
my_regressor = XGBRegressor(objective="reg:absoluteerror")
conformal_predictor = ConformalCoherentQuantileRegressor(estimator=my_regressor)
conformal_predictor.fit(X_train, y_train)

# Predict with the underlying regressor
ŷ_test = conformal_predictor.predict(X_test)

# Predict quantiles with the conformal predictor
ŷ_test_quantiles = conformal_predictor.predict_quantiles(
    X_test, quantiles=(0.025, 0.05, 0.1, 0.5, 0.9, 0.95, 0.975)
)

When the input data is a pandas DataFrame, the output is also a pandas DataFrame. For example, printing the head of ŷ_test_quantiles yields:

house_id 0.025 0.05 0.1 0.5 0.9 0.95 0.975
1357 114743.7 120917.9 131752.6 156708.2 175907.8 187996.1 205443.4
2367 67382.7 80191.7 86871.8 105807.1 118465.3 127581.2 142419.1
2822 119068.0 131864.8 138541.6 159447.7 179227.2 197337.0 214134.1
2126 93885.8 100040.7 111345.5 134292.7 150557.1 164595.8 182524.1
1544 68959.8 81648.8 88364.1 108298.3 122329.6 132421.1 147225.6

Let's visualize the predicted quantiles on the test set:

Expand to see the code that generated the graph above
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

%config InlineBackend.figure_format = "retina"
plt.rc("font", family="DejaVu Sans", size=10)
plt.figure(figsize=(8, 4.5))
idx = ŷ_test_quantiles[0.5].sample(50, random_state=42).sort_values().index
x = list(range(1, len(idx) + 1))
x_ticks = [1, *list(range(5, len(idx) + 1, 5))]
for j in range(3):
    coverage = round(100 * (ŷ_test_quantiles.columns[-(j + 1)] - ŷ_test_quantiles.columns[j]))
    plt.bar(
        x,
        ŷ_test_quantiles.loc[idx].iloc[:, -(j + 1)] - ŷ_test_quantiles.loc[idx].iloc[:, j],
        bottom=ŷ_test_quantiles.loc[idx].iloc[:, j],
        color=["#b3d9ff", "#86bfff", "#4da6ff"][j],
        label=f"{coverage}% Prediction interval",
    )
plt.plot(
    x,
    y_test.loc[idx],
    "s",
    label="Actual (test)",
    markeredgecolor="#e74c3c",
    markeredgewidth=1.414,
    markerfacecolor="none",
    markersize=4,
)
plt.plot(x, ŷ_test.loc[idx], "s", color="blue", label="Predicted (test)", markersize=2)
plt.xlabel("House")
plt.xticks(x_ticks, x_ticks)
plt.gca().yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f"${x/1000:,.0f}k"))
plt.gca().tick_params(axis="both", labelsize=10)
plt.gca().spines["top"].set_visible(False)
plt.gca().spines["right"].set_visible(False)
plt.grid(False)
plt.grid(axis="y")
plt.legend(loc="upper left", title="House price", title_fontproperties={"weight": "bold"})
plt.tight_layout()

Predicting intervals

In addition to quantile prediction, you can use predict_interval to predict conformally calibrated prediction intervals. Compared to quantiles, these focus on reliable coverage over quantile accuracy. Example usage:

# Predict an interval for each example with the conformal predictor
ŷ_test_interval = conformal_predictor.predict_interval(X_test, coverage=0.95)

# Measure the coverage of the prediction intervals on the test set
coverage = ((ŷ_test_interval.iloc[:, 0] <= y_test) & (y_test <= ŷ_test_interval.iloc[:, 1])).mean()
print(coverage)  # 96.6%

When the input data is a pandas DataFrame, the output is also a pandas DataFrame. For example, printing the head of ŷ_test_interval yields:

house_id 0.025 0.975
1357 107202.8 206290.4
2367 66665.1 146004.8
2822 115591.8 220314.8
2126 85288.1 183037.8
1544 67889.9 150646.2

Forecasting time series

Conformal Tights also exports a Darts forecaster called DartsForecaster that uses a ConformalCoherentQuantileRegressor to make conformally calibrated probabilistic time series forecasts. To demonstrate its usage, let's begin by loading a time series dataset:

from darts.datasets import ElectricityConsumptionZurichDataset

# Load a forecasting dataset
ts = ElectricityConsumptionZurichDataset().load()
ts = ts.resample("h")

# Split the dataset into covariates X and target y
X = ts.drop_columns(["Value_NE5", "Value_NE7"])
y = ts["Value_NE5"]  # NE5 = Household energy consumption

# Add categorical covariates to X
X = X.add_holidays(country_code="CH")
X = X.add_datetime_attribute("month")
X = X.add_datetime_attribute("dayofweek")
X = X.add_datetime_attribute("hour")
X_categoricals = ["holidays", "month", "dayofweek", "hour"]

Printing the tail of the covariates time series X.pd_dataframe() yields:

Timestamp Hr [%Hr] RainDur [min] StrGlo [W/m2] T [°C] WD [°] WVs [m/s] WVv [m/s] p [hPa] holidays month dayofweek hour
2022‑08‑30 20h 70.2 0.0 0.0 19.9 290.2 1.7 1.5 968.5 0.0 7.0 1.0 20.0
2022‑08‑30 21h 70.1 0.0 0.0 19.5 239.2 1.0 0.7 968.1 0.0 7.0 1.0 21.0
2022‑08‑30 22h 71.3 0.0 0.0 19.5 28.9 1.5 1.3 967.9 0.0 7.0 1.0 22.0
2022‑08‑30 23h 80.4 0.0 0.0 18.9 24.3 1.6 1.1 967.9 0.0 7.0 1.0 23.0
2022‑08‑31 00h 81.6 1.0 0.0 18.7 293.5 0.9 0.3 967.8 0.0 7.0 2.0 0.0

We can now equip a scikit-learn regressor with conformal prediction using ConformalCoherentQuantileRegressor as before, and then equip that conformal predictor with probabilistic time series forecasting using DartsForecaster:

from conformal_tights import DartsForecaster, ConformalCoherentQuantileRegressor
from pandas import Timestamp
from xgboost import XGBRegressor

# Split the dataset into train and test
test_cutoff = Timestamp("2022-06-01")
y_train, y_test = y.split_after(test_cutoff)
X_train, X_test = X.split_after(test_cutoff)

# Now let's:
# 1. Create an sklearn regressor of our choosing, in this case `XGBRegressor`
# 2. Add conformal quantile prediction to the regressor with `ConformalCoherentQuantileRegressor`
# 3. Add probabilistic forecasting to the conformal predictor with `DartsForecaster`
my_regressor = XGBRegressor()
conformal_predictor = ConformalCoherentQuantileRegressor(estimator=my_regressor)
forecaster = DartsForecaster(
    model=conformal_predictor,
    lags=5 * 24,  # Add the last 5 days of the target to the prediction features
    lags_future_covariates=[0],  # Add the current timestamp's covariates to the prediction features
    categorical_future_covariates=X_categoricals,  # Convert these covariates to pd.Categorical
)

# Fit the forecaster
forecaster.fit(y_train, future_covariates=X_train)

# Make a probabilistic forecast 5 days into the future by predicting a set of conformally calibrated
# quantiles at each time step and drawing 500 samples from them
quantiles = (0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.975)
forecast = forecaster.predict(
    n=5 * 24, future_covariates=X_test, num_samples=500, quantiles=quantiles
)

Printing the head of the forecast quantiles time series forecast.quantiles_df(quantiles=quantiles) yields:

Timestamp Value_NE5_0.025 Value_NE5_0.05 Value_NE5_0.1 Value_NE5_0.25 Value_NE5_0.5 Value_NE5_0.75 Value_NE5_0.9 Value_NE5_0.95 Value_NE5_0.975
2022‑06‑01 01h 19165.2 19268.3 19435.7 19663.0 19861.7 20062.2 20237.9 20337.7 20453.2
2022‑06‑01 02h 19004.0 19099.0 19226.3 19453.7 19710.7 19966.1 20170.1 20272.8 20366.9
2022‑06‑01 03h 19372.6 19493.0 19679.4 20027.6 20324.6 20546.3 20773.2 20910.3 21014.1
2022‑06‑01 04h 21936.2 22105.6 22436.0 22917.5 23308.6 23604.8 23871.0 24121.7 24351.5
2022‑06‑01 05h 25040.5 25330.5 25531.1 25910.4 26439.4 26903.2 27287.4 27493.9 27633.9

Let's visualize the forecast and its prediction interval on the test set:

Expand to see the code that generated the graph above
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

%config InlineBackend.figure_format = "retina"
plt.rc("font", family="DejaVu Sans", size=10)
plt.figure(figsize=(8, 4.5))
y_train[-2 * 24 :].plot(label="Actual (train)")
y_test[: len(forecast)].plot(label="Actual (test)")
forecast.plot(label="Forecast with\n90% Prediction interval", low_quantile=0.05, high_quantile=0.95)
plt.gca().set_xlabel("")
plt.gca().yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f"{x/1000:,.0f} MWh"))
plt.gca().tick_params(axis="both", labelsize=10)
plt.legend(loc="upper right", title="Energy consumption", title_fontproperties={"weight": "bold"})
plt.tight_layout()

Contributing

Prerequisites
1. Set up Git to use SSH
  1. Generate an SSH key and add the SSH key to your GitHub account.

  2. Configure SSH to automatically load your SSH keys:

    cat << EOF >> ~/.ssh/config
    
    Host *
      AddKeysToAgent yes
      IgnoreUnknown UseKeychain
      UseKeychain yes
      ForwardAgent yes
    EOF
2. Install Docker
  1. Install Docker Desktop.
3. Install VS Code or PyCharm
  1. Install VS Code and VS Code's Dev Containers extension. Alternatively, install PyCharm.
  2. Optional: install a Nerd Font such as FiraCode Nerd Font and configure VS Code or configure PyCharm to use it.
Development environments

The following development environments are supported:

  1. ⭐️ GitHub Codespaces: click on Code and select Create codespace to start a Dev Container with GitHub Codespaces.
  2. ⭐️ Dev Container (with container volume): click on Open in Dev Containers to clone this repository in a container volume and create a Dev Container with VS Code.
  3. Dev Container: clone this repository, open it with VS Code, and run Ctrl/⌘ + + PDev Containers: Reopen in Container.
  4. PyCharm: clone this repository, open it with PyCharm, and configure Docker Compose as a remote interpreter with the dev service.
  5. Terminal: clone this repository, open it with your terminal, and run docker compose up --detach dev to start a Dev Container in the background, and then run docker compose exec dev zsh to open a shell prompt in the Dev Container.
Developing
  • This project follows the Conventional Commits standard to automate Semantic Versioning and Keep A Changelog with Commitizen.
  • Run poe from within the development environment to print a list of Poe the Poet tasks available to run on this project.
  • Run poetry add {package} from within the development environment to install a run time dependency and add it to pyproject.toml and poetry.lock. Add --group test or --group dev to install a CI or development dependency, respectively.
  • Run poetry update from within the development environment to upgrade all dependencies to the latest versions allowed by pyproject.toml.
  • Run cz bump to bump the package's version, update the CHANGELOG.md, and create a git tag.