Skip to content

Commit

Permalink
update example list (tensorlayer#542)
Browse files Browse the repository at this point in the history
* update example list

* fix Duplicate explicit target name
  • Loading branch information
zsdonghao authored and DEKHTIARJonathan committed May 4, 2018
1 parent 7f69294 commit 3aecaae
Show file tree
Hide file tree
Showing 2 changed files with 68 additions and 54 deletions.
60 changes: 34 additions & 26 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -125,30 +125,40 @@ Examples can be found [in this folder](https://github.com/zsdonghao/tensorlayer/

## Basics
- Multi-layer perceptron (MNIST) - Classification task, see [tutorial\_mnist\_simple.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_simple.py).
- Multi-layer perceptron (MNIST) - Classification using Iterator, see [method1](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py) and [method2](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout2.py).


## Computer Vision
- Multi-layer perceptron (MNIST) - Classification with dropout using iterator, see [method1](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py) (**use placeholder**) and [method2](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout2.py) (**use reuse**).
- Denoising Autoencoder (MNIST). Classification task, see [tutorial_mnist.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py).
- Stacked Denoising Autoencoder and Fine-Tuning (MNIST). Classification task, see [tutorial_mnist.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py).
- Convolutional Network (MNIST). Classification task, see [tutorial_mnist.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py).
- Convolutional Network (CIFAR-10). Classification task, see [tutorial\_cifar10.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10.py) and [tutorial\_cifar10_tfrecord.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py).
- VGG 16 (ImageNet). Classification task, see [tl.models.VGG16](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_models_vgg16.py) or [tutorial_vgg16.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg16.py).
- VGG 19 (ImageNet). Classification task, see [tutorial_vgg19.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg19.py).
- InceptionV3 (ImageNet). Classification task, see [tutorial\_inceptionV3_tfslim.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py).
- SqueezeNet (ImageNet). Model compression, see [tl.models.SqueezeNetV1](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_models_squeezenetv1.py) or [tutorial_squeezenet.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_squeezenet.py)
- MobileNet (ImageNet). Model compression, see [tl.models.MobileNetV1](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_models_mobilenetv1.py) or [tutorial_mobilenet.py](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mobilenet.py).
- BinaryNet. Model compression, see [mnist](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_binarynet_mnist_cnn.py) [cifar10](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_binarynet_cifar10_tfrecord.py).
- Ternary Weight Network. Model compression, see [mnist](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ternaryweight_mnist_cnn.py) [cifar10](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ternaryweight_cifar10_tfrecord.py).
- DoReFa-Net. Model compression, see [mnist](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_dorefanet_mnist_cnn.py) [cifar10](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_dorefanet_cifar10_tfrecord.py).
- TensorFlow dataset API for object detection see [here](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_tf_dataset_voc.py).
- Merge TF-Slim into TensorLayer. [tutorial\_inceptionV3_tfslim.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py).
- Merge Keras into TensorLayer. [tutorial_keras.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_keras.py).
- Data augmentation with TFRecord. Effective way to load and pre-process data, see [tutorial_tfrecord*.py](https://github.com/zsdonghao/tensorlayer/tree/master/example) and [tutorial\_cifar10_tfrecord.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py).
- Data augmentation with TensorLayer, see [tutorial\_image_preprocess.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_image_preprocess.py).
- Float 16 half-precision model, see [tutorial\_mnist_float16.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_float16.py)
- Distributed Training. [mnist](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_distributed.py) and [imagenet](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_imagenet_inceptionV3_distributed.py) by [jorgemf](https://github.com/jorgemf).

## Vision
- ArcFace: Additive Angular Margin Loss for Deep Face Recognition, see [InsignFace](https://github.com/auroua/InsightFace_TF).
- BinaryNet. Model acceleration, see [mnist](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_binarynet_mnist_cnn.py) [cifar10](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_binarynet_cifar10_tfrecord.py).
- Ternary Weight Network. Model acceleration, see [mnist](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ternaryweight_mnist_cnn.py) [cifar10](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ternaryweight_cifar10_tfrecord.py).
- DoReFa-Net. Model acceleration, see [mnist](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_dorefanet_mnist_cnn.py) [cifar10](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_dorefanet_cifar10_tfrecord.py).
- Wide ResNet (CIFAR) by [ritchieng](https://github.com/ritchieng/wideresnet-tensorlayer).
- More CNN implementations of [TF-Slim](https://github.com/tensorflow/models/tree/master/research/slim) can be connected to TensorLayer via SlimNetsLayer.
- [Spatial Transformer Networks](https://arxiv.org/abs/1506.02025) by [zsdonghao](https://github.com/zsdonghao/Spatial-Transformer-Nets).
- [U-Net for brain tumor segmentation](https://github.com/zsdonghao/u-net-brain-tumor) by [zsdonghao](https://github.com/zsdonghao/u-net-brain-tumor).
- Variational Autoencoder (VAE) for (CelebA) by [yzwxx](https://github.com/yzwxx/vae-celebA).
- Variational Autoencoder (VAE) for (MNIST) by [BUPTLdy](https://github.com/BUPTLdy/tl-vae).
- Image Captioning - Reimplementation of Google's [im2txt](https://github.com/tensorflow/models/tree/master/research/im2txt) by [zsdonghao](https://github.com/zsdonghao/Image-Captioning).


## Adversarial Learning
- DCGAN (CelebA). Generating images by [Deep Convolutional Generative Adversarial Networks](http://arxiv.org/abs/1511.06434) by [zsdonghao](https://github.com/zsdonghao/dcgan).
- [Generative Adversarial Text to Image Synthesis](https://github.com/zsdonghao/text-to-image) by [zsdonghao](https://github.com/zsdonghao/text-to-image).
- [Unsupervised Image to Image Translation with Generative Adversarial Networks](https://github.com/zsdonghao/Unsup-Im2Im) by [zsdonghao](https://github.com/zsdonghao/Unsup-Im2Im).
- [Improved CycleGAN](https://github.com/luoxier/CycleGAN_Tensorlayer) with resize-convolution by [luoxier](https://github.com/luoxier/CycleGAN_Tensorlayer)
- [Super Resolution GAN](https://arxiv.org/abs/1609.04802) by [zsdonghao](https://github.com/zsdonghao/SRGAN).
- [DAGAN: Fast Compressed Sensing MRI Reconstruction](https://github.com/nebulaV/DAGAN) by [nebulaV](https://github.com/nebulaV/DAGAN).

## Natural Language Processing
- Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see [tutorial_ptb_lstm.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_ptb_lstm.py) and [tutorial\_ptb\_lstm\_state\_is_tuple.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py).
- Word Embedding (Word2vec). Train a word embedding matrix, see [tutorial\_word2vec_basic.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial\_word2vec_basic.py).
Expand All @@ -158,13 +168,6 @@ Examples can be found [in this folder](https://github.com/zsdonghao/tensorlayer/
- [Chatbot in 200 lines of code](https://github.com/zsdonghao/seq2seq-chatbot) for [Seq2Seq](http://tensorlayer.readthedocs.io/en/latest/modules/layers.html#simple-seq2seq).
- FastText Sentence Classification (IMDB), see [tutorial\_imdb\_fasttext.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_imdb_fasttext.py) by [tomtung](https://github.com/tomtung).

## Adversarial Learning
- DCGAN (CelebA). Generating images by [Deep Convolutional Generative Adversarial Networks](http://arxiv.org/abs/1511.06434) by [zsdonghao](https://github.com/zsdonghao/dcgan).
- [Generative Adversarial Text to Image Synthesis](https://github.com/zsdonghao/text-to-image) by [zsdonghao](https://github.com/zsdonghao/text-to-image).
- [Unsupervised Image to Image Translation with Generative Adversarial Networks](https://github.com/zsdonghao/Unsup-Im2Im) by [zsdonghao](https://github.com/zsdonghao/Unsup-Im2Im).
- [Improved CycleGAN](https://github.com/luoxier/CycleGAN_Tensorlayer) with resize-convolution by [luoxier](https://github.com/luoxier/CycleGAN_Tensorlayer)
- [Super Resolution GAN](https://arxiv.org/abs/1609.04802) by [zsdonghao](https://github.com/zsdonghao/SRGAN).
- [DAGAN: Fast Compressed Sensing MRI Reconstruction](https://github.com/nebulaV/DAGAN) by [nebulaV](https://github.com/nebulaV/DAGAN).

## Reinforcement Learning
- Policy Gradient / Network (Atari Ping Pong), see [tutorial\_atari_pong.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_atari_pong.py).
Expand All @@ -176,15 +179,20 @@ Examples can be found [in this folder](https://github.com/zsdonghao/tensorlayer/
- [DAGGER](https://www.cs.cmu.edu/%7Esross1/publications/Ross-AIStats11-NoRegret.pdf) for ([Gym Torcs](https://github.com/ugo-nama-kun/gym_torcs)) by [zsdonghao](https://github.com/zsdonghao/Imitation-Learning-Dagger-Torcs).
- [TRPO](https://arxiv.org/abs/1502.05477) for continuous and discrete action space by [jjkke88](https://github.com/jjkke88/RL_toolbox).


## Pretrained Models
- VGG 16 (ImageNet). Classification task, see [tl.models.VGG16](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_models_vgg16.py) or [tutorial_vgg16.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg16.py).
- VGG 19 (ImageNet). Classification task, see [tutorial_vgg19.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg19.py).
- InceptionV3 (ImageNet). Classification task, see [tutorial\_inceptionV3_tfslim.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py).
- SqueezeNet (ImageNet). Model acceleration, see [tl.models.SqueezeNetV1](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_models_squeezenetv1.py) or [tutorial_squeezenet.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_squeezenet.py)
- MobileNet (ImageNet). Model acceleration, see [tl.models.MobileNetV1](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_models_mobilenetv1.py) or [tutorial_mobilenet.py](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mobilenet.py).
- More CNN implementations of [TF-Slim](https://github.com/tensorflow/models/tree/master/research/slim) can be connected to TensorLayer via SlimNetsLayer.
- All pretrained models in [here](https://github.com/tensorlayer/pretrained-models).

## Miscellaneous
- Distributed Training. [mnist](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_distributed.py) and [imagenet](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_imagenet_inceptionV3_distributed.py) by [jorgemf](https://github.com/jorgemf).
- Merge TF-Slim into TensorLayer. [tutorial\_inceptionV3_tfslim.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py).
- Merge Keras into TensorLayer. [tutorial_keras.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_keras.py).
- Data augmentation with TFRecord. Effective way to load and pre-process data, see [tutorial_tfrecord*.py](https://github.com/zsdonghao/tensorlayer/tree/master/example) and [tutorial\_cifar10_tfrecord.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py).
- Data augmentation with TensorLayer, see [tutorial\_image_preprocess.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_image_preprocess.py).
- TensorDB by [fangde](https://github.com/fangde) see [here](https://github.com/akaraspt/tl_paper).
- A simple web service - [TensorFlask](https://github.com/JoelKronander/TensorFlask) by [JoelKronander](https://github.com/JoelKronander).
- Float 16 half-precision model, see [tutorial\_mnist_float16.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_float16.py)


## Notes
TensorLayer provides two set of Convolutional layer APIs, see [(Advanced)](http://tensorlayer.readthedocs.io/en/latest/modules/layers.html#convolutional-layer-pro) and [(Basic)](http://tensorlayer.readthedocs.io/en/latest/modules/layers.html#convolutional-layer-simplified) on readthedocs website.
Expand Down
Loading

0 comments on commit 3aecaae

Please sign in to comment.