Skip to content

Commit

Permalink
Readding the validation of the minimal cnn input size (Unity-Technolo…
Browse files Browse the repository at this point in the history
  • Loading branch information
vincentpierre authored May 7, 2021
1 parent 950314f commit f063416
Show file tree
Hide file tree
Showing 2 changed files with 26 additions and 0 deletions.
23 changes: 23 additions & 0 deletions ml-agents/mlagents/trainers/tests/torch/test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,29 @@ def test_min_visual_size():
enc.forward(vis_input)


@pytest.mark.parametrize(
"encoder_type",
[
EncoderType.SIMPLE,
EncoderType.NATURE_CNN,
EncoderType.SIMPLE,
EncoderType.MATCH3,
],
)
def test_invalid_visual_input_size(encoder_type):
with pytest.raises(UnityTrainerException):
obs_spec = create_observation_specs_with_shapes(
[
(
ModelUtils.MIN_RESOLUTION_FOR_ENCODER[encoder_type] - 1,
ModelUtils.MIN_RESOLUTION_FOR_ENCODER[encoder_type],
1,
)
]
)
ModelUtils.create_input_processors(obs_spec, 20, encoder_type, 20, False)


@pytest.mark.parametrize("num_visual", [0, 1, 2])
@pytest.mark.parametrize("num_vector", [0, 1, 2])
@pytest.mark.parametrize("normalize", [True, False])
Expand Down
3 changes: 3 additions & 0 deletions ml-agents/mlagents/trainers/torch/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,6 +159,9 @@ def get_encoder_for_obs(
# VISUAL
if dim_prop in ModelUtils.VALID_VISUAL_PROP:
visual_encoder_class = ModelUtils.get_encoder_for_type(vis_encode_type)
ModelUtils._check_resolution_for_encoder(
shape[0], shape[1], vis_encode_type
)
return (visual_encoder_class(shape[0], shape[1], shape[2], h_size), h_size)
# VECTOR
if dim_prop in ModelUtils.VALID_VECTOR_PROP:
Expand Down

0 comments on commit f063416

Please sign in to comment.