-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Create CSC_BCSC_analysis-BC_Epithelial_cell_data.R
- Loading branch information
Showing
1 changed file
with
118 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
start on 25Feb | ||
BC_Epithelial_cell_data | ||
|
||
library(Seurat) | ||
library(ggplot2) | ||
library(RColorBrewer) | ||
|
||
|
||
setwd('/storage2/Project/CSC/10X/DGIST_data02') | ||
DGIST=readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Epithelial_cell_data/EpithelialCells_SeuratSet.rds") | ||
#BCSC_meta$ = readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Epithelial_cell_data/Epithelial_metadata.rds") | ||
#BCSC_raw = readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Epithelial_cell_data/Epithelial_Rawcount.rds") | ||
#BCSC_norm = readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Epithelial_cell_data/Epithelial_normalizedExprs.rds") | ||
DGIST@assays DGIST@active.ident DGIST@reductions DGIST@version | ||
DGIST@meta.data DGIST@graphs DGIST@project.name DGIST@commands | ||
DGIST@active.assay DGIST@neighbors DGIST@misc DGIST@tools | ||
|
||
pdf("DGIST_data02_BCSC_tsne.pdf") | ||
DimPlot(DGIST,reduction = "tsne") | ||
dev.off() | ||
|
||
|
||
|
||
#윤정교 교수님 wnt signal | ||
target = 'RHF43' | ||
|
||
pdf(paste0("dr.Yoon_wnt_",target,".pdf")) | ||
cols <- brewer.pal(9,"YlOrRd") | ||
df = data.frame(x=DGIST@reductions$tsne@cell.embeddings[, "tSNE_1"], | ||
y=DGIST@reductions$tsne@cell.embeddings[, "tSNE_2"], | ||
expression=DGIST@assays$RNA@scale.data[target,]) | ||
ggplot(df,aes(x=x, y=y, colour=expression)) + | ||
geom_point(size=1) + | ||
scale_colour_gradientn(colours = cols ) + | ||
ylab("Component 2") + | ||
xlab("Component 1") + | ||
theme_bw() + | ||
theme(text = element_text(size=20), | ||
panel.grid.major=element_blank(), | ||
panel.grid.minor=element_blank(), | ||
axis.line=element_line(size=1), | ||
axis.ticks=element_line(size=1), | ||
legend.text=element_text(size=20), | ||
legend.title=element_blank(), | ||
legend.key=element_blank(), | ||
axis.text.x = element_text(size=20) | ||
)+ ggtitle(paste0("Wnt signal : ",target)) | ||
dev.off() | ||
|
||
#bulkRNA-seq deconvolution 비교 | ||
#cluster별 variable gene 찾고 CIBERSORT, Xcell에 대입 | ||
HP_raw = readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Hematopoietic_cell_data/Hematopoietic_Rawcount.rds") | ||
HP_norm = readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Hematopoietic_cell_data/Hematopoietic_normalizedExprs.rds") | ||
HP_meta = readRDS(file="/storage2/Project/CSC/10X/DGIST_data02/BC_Hematopoietic_cell_data/Hematopoietic_metadata.rds") | ||
table(HP_meta$cell_label_details) | ||
B_cell Bone_marrow_cells CMP | ||
3017 17 10 | ||
Dendritic Erythroblast GMP | ||
4322 6 34 | ||
Haematopoietic_stem_cells Macrophage Monocyte | ||
191 4673 8461 | ||
Myelocyte Neutrophil NK_cell | ||
339 1183 3905 | ||
Pro-Myelocyte T_cell | ||
12 34579 | ||
|
||
#다쓰면 데이터 너무커서 CIBERSORT에 안올라감 1/8 = 7593 CELL 정도 써야함 (500개이상이면 많은거) | ||
#500개 random sampling | ||
#bulkRNA에서 쓴 gene만 보자 | ||
bulk = read.table(file="/storage2/Project/CSC/RNA/03_Deconvolution/CSC_RNA_TPM_rm0_HUGO_rmdup.txt", header=TRUE, stringsAsFactors=FALSE) | ||
gene <- bulk$external_gene_name | ||
|
||
#CIBERSORT_reference_sample_file | ||
HP_raw_non0 <- as.matrix(HP_raw[Matrix::rowSums(HP_raw)>0,]) | ||
#write.table(HP_raw_non0,'/storage2/Project/CSC/10X/DGIST_data02/ref_sample.txt',sep = "\t", row.names=TRUE, col.names=TRUE) | ||
> dim(HP_raw[Matrix::rowSums(HP_raw)>0,]) | ||
[1] 35126 60749 | ||
> dim(HP_raw) | ||
[1] 36826 60749 | ||
HP_raw_non0_reduced <- HP_raw_non0[which(rownames(HP_raw_non0)%in%gene),which(colnames(HP_raw_non0) %in% cell)] | ||
> dim(HP_raw_non0_reduced) | ||
[1] 26008 4109 | ||
write.table(HP_raw_non0_reduced,'/storage2/Project/CSC/10X/DGIST_data02/ref_sample_reduced.txt',sep = "\t", row.names=TRUE, col.names=TRUE) | ||
|
||
|
||
#CIBERSORT_phenotye_file | ||
HP_ph <- matrix(,nrow=14,ncol=60749) | ||
rownames(HP_ph) <- c("T_cell","Monocyte","Macrophage","B_cell","Dendritic","NK_cell","GMP","CMP","Neutrophil","Haematopoietic_stem_cells","Bone_marrow_cells","Erythroblast","Myelocyte","Pro-Myelocyte") | ||
colnames(HP_ph) <- colnames(HP_raw_non0) | ||
for(i in 1:ncol(HP_ph)){ | ||
cell <- colnames(HP_ph)[i] | ||
celltype <- HP_meta[cell,"cell_label_details"] | ||
HP_ph[celltype,cell] = 1 | ||
} | ||
HP_ph[is.na(HP_ph)] <- 2 | ||
#write.table(HP_ph,'/storage2/Project/CSC/10X/DGIST_data02/pheno_sample.txt',sep = "\t", row.names=TRUE, col.names=FALSE) | ||
#reduce tcell | ||
tcell_list<-sample(colnames(HP_ph[,HP_ph["T_cell",]==1]),500) | ||
B_list<-sample(colnames(HP_ph[,HP_ph["B_cell",]==1]),500) | ||
DC_list<-sample(colnames(HP_ph[,HP_ph["Dendritic",]==1]),500) | ||
Macro_list<-sample(colnames(HP_ph[,HP_ph["Macrophage",]==1]),500) | ||
Mono_list<-sample(colnames(HP_ph[,HP_ph["Monocyte",]==1]),500) | ||
Neutro_list<-sample(colnames(HP_ph[,HP_ph["Neutrophil",]==1]),500) | ||
NK_list<-sample(colnames(HP_ph[,HP_ph["NK_cell",]==1]),500) | ||
|
||
BM_list<-colnames(HP_ph[,HP_ph["Bone_marrow_cells",]==1]) | ||
CMP_list<-colnames(HP_ph[,HP_ph["CMP",]==1]) | ||
Erythro_list<-colnames(HP_ph[,HP_ph["Erythroblast",]==1]) | ||
GMP_list<-colnames(HP_ph[,HP_ph["GMP",]==1]) | ||
Haema_list<-colnames(HP_ph[,HP_ph["Haematopoietic_stem_cells",]==1]) | ||
Myelo_list<-colnames(HP_ph[,HP_ph["Myelocyte",]==1]) | ||
ProM_list<-colnames(HP_ph[,HP_ph["Pro-Myelocyte",]==1]) | ||
|
||
cell <- union(union(union(union(union(union(union(union(union(union(union(union(union(tcell_list,B_list),DC_list),Macro_list),Mono_list),Neutro_list),NK_list),BM_list),CMP_list),Erythro_list),GMP_list),Haema_list),Myelo_list),ProM_list) | ||
#4109 cells | ||
|
||
HP_ph_reduced<-HP_ph[,which(colnames(HP_ph) %in% cell)] | ||
write.table(HP_ph_reduced,'/storage2/Project/CSC/10X/DGIST_data02/pheno_sample_reduced.txt',sep = "\t", row.names=TRUE, col.names=FALSE) |