Skip to content

EfficientViT is a new family of vision models for efficient high-resolution vision.

License

Notifications You must be signed in to change notification settings

swipswaps/efficientvit

 
 

Repository files navigation

EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction

News

If you are interested in getting updates, please join our mailing list here.

  • [2023/09/12] EfficientViT is highlighted by MIT home page and MIT News.
  • [2023/07/18] EfficientViT is accepted by ICCV 2023.

Demo

EfficientViT-L1 (45.9ms on Nvidia Jetson AGX Orin, 82.7 mIoU on Cityscapes)

demo

About EfficientViT Models

EfficientViT is a new family of vision models for efficient high-resolution dense prediction. The core building block of EfficientViT is a new lightweight multi-scale linear attention module that achieves global receptive field and multi-scale learning with only hardware-efficient operations.

Here are the results of EfficientViT on image classification:

Here are comparisons with prior SOTA semantic segmentation models:

Getting Started

Installation

conda create -n efficientvit python=3.10
conda activate efficientvit
conda install -c conda-forge mpi4py openmpi
pip install -r requirements.txt

Dataset

Our code expects the ImageNet dataset directory to follow the following structure:

imagenet
├── train
├── val
Our code expects the Cityscapes dataset directory to follow the following structure:

cityscapes
├── gtFine
|   ├── train
|   ├── val
├── leftImg8bit
|   ├── train
|   ├── val
Our code expects the ADE20K dataset directory to follow the following structure:

ade20k
├── annotations
|   ├── training
|   ├── validation
├── images
|   ├── training
|   ├── validation

Download Pretrained Models

Latency/Throughput is measured on NVIDIA Jetson Nano, NVIDIA Jetson AGX Orin, and NVIDIA A100 GPU with TensorRT, fp16. Data transfer time is included.

ImageNet

All EfficientViT classification models are trained on ImageNet-1K with random initialization (300 epochs + 20 warmup epochs) using supervised learning.

Model Resolution ImageNet Top1 Acc ImageNet Top5 Acc Params MACs A100 Throughput Checkpoint
EfficientNetV2-S 384x384 83.9 - 22M 8.8G 2869 image/s -
EfficientNetV2-M 480x480 85.1 - 54M 24G 1160 image/s -
EfficientViT-L1 224x224 84.5 96.9 53M 5.3G 6207 image/s link
EfficientViT-L2 224x224 85.0 97.1 64M 6.9G 4998 image/s link
EfficientViT-L2 256x256 85.4 97.2 64M 9.1G 3969 image/s link
EfficientViT-L2 288x288 85.6 97.4 64M 11G 3102 image/s link
EfficientViT-L2 320x320 85.8 97.4 64M 14G 2525 image/s link
EfficientViT-L2 352x352 85.9 97.5 64M 17G 2099 image/s link
EfficientViT-L2 384x384 86.0 97.5 64M 20G 1784 image/s link
Model Resolution ImageNet Top1 Acc ImageNet Top5 Acc Params MACs Jetson Nano (bs1) Jetson Orin (bs1) Checkpoint
EfficientViT-B1 224x224 79.4 94.3 9.1M 0.52G 24.8ms 1.48ms link
EfficientViT-B1 256x256 79.9 94.7 9.1M 0.68G 28.5ms 1.57ms link
EfficientViT-B1 288x288 80.4 95.0 9.1M 0.86G 34.5ms 1.82ms link
EfficientViT-B2 224x224 82.1 95.8 24M 1.6G 50.6ms 2.63ms link
EfficientViT-B2 256x256 82.7 96.1 24M 2.1G 58.5ms 2.84ms link
EfficientViT-B2 288x288 83.1 96.3 24M 2.6G 69.9ms 3.30ms link
EfficientViT-B3 224x224 83.5 96.4 49M 4.0G 101ms 4.36ms link
EfficientViT-B3 256x256 83.8 96.5 49M 5.2G 120ms 4.74ms link
EfficientViT-B3 288x288 84.2 96.7 49M 6.5G 141ms 5.63ms link

Cityscapes

Model Resolution Cityscapes mIoU Params MACs Jetson Nano (bs1) Jetson Orin (bs1) Checkpoint
EfficientViT-B0 1024x2048 75.7 0.7M 4.4G 275ms 9.9ms link
EfficientViT-B1 1024x2048 80.5 4.8M 25G 819ms 24.3ms link
EfficientViT-B2 1024x2048 82.1 15M 74G 1676ms 46.5ms link
EfficientViT-B3 1024x2048 83.0 40M 179G 3192ms 81.8ms link

ADE20K

Model Resolution ADE20K mIoU Params MACs Jetson Nano (bs1) Jetson Orin (bs1) Checkpoint
EfficientViT-B1 512x512 42.8 4.8M 3.1G 110ms 4.0ms link
EfficientViT-B2 512x512 45.9 15M 9.1G 212ms 7.3ms link
EfficientViT-B3 512x512 49.0 39M 22G 411ms 12.5ms link

Usage

from efficientvit.cls_model_zoo import create_cls_model

model = create_cls_model(
  name="l2", 
  pretrained=True, 
  weight_url="assets/checkpoints/cls/l2-r384.pt"
)
from efficientvit.seg_model_zoo import create_seg_model

model = create_seg_model(
  name="b3", 
  dataset="cityscapes", 
  pretrained=True, 
  weight_url="assets/checkpoints/seg/cityscapes/b3.pt"
)
from efficientvit.seg_model_zoo import create_seg_model

model = create_seg_model(
  name="b3", 
  dataset="ade20k", 
  pretrained=True, 
  weight_url="assets/checkpoints/seg/ade20k/b3.pt"
)

Evaluation

Please run eval_cls_model.py or eval_seg_model.py to evaluate our models.

Examples: classification, segmentation

Visualization

Please run eval_seg_model.py to visualize the outputs of our semantic segmentation models.

Example:

python eval_seg_model.py --dataset cityscapes --crop_size 1024 --model b3 --save_path demo/cityscapes/b3/

Benchmarking with TFLite

To generate TFLite files, please refer to tflite_export.py. It requires the TinyNN package.

pip install git+https://github.com/alibaba/TinyNeuralNetwork.git

Example:

python tflite_export.py --export_path model.tflite --task seg --dataset ade20k --model b3 --resolution 512 512

Benchmarking with TensorRT

To generate onnx files, please refer to onnx_export.py.

Training

Please see TRAINING.md for detailed training instructions.

Contact

Han Cai: [email protected]

TODO

  • ImageNet Pretrained models
  • Segmentation Pretrained models
  • ImageNet training code
  • EfficientViT L series, designed for cloud
  • EfficientViT for segment anything
  • EfficientViT for super-resolution
  • Segmentation training code

Citation

If EfficientViT is useful or relevant to your research, please kindly recognize our contributions by citing our paper:

@article{cai2022efficientvit,
  title={Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition},
  author={Cai, Han and Gan, Chuang and Han, Song},
  journal={arXiv preprint arXiv:2205.14756},
  year={2022}
}

About

EfficientViT is a new family of vision models for efficient high-resolution vision.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.0%
  • Shell 1.0%