Skip to content

kafka缓存数据,SparkStreaming接收处理导入Hbase

Notifications You must be signed in to change notification settings

swordsmanliu/SparkStreamingHbase

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SparkStreamingHbase

kafka缓存数据,SparkStreaming接收处理导入Hbase 用于生成porduce文件,之后用Flume采集。 运行命令及配置如下所示 scala -classpath producer.jar com.jacker.file.Producer 100 最后所带参数为生成文件的行数 #Flume 配置

agent.sources = loggersource agent.channels = memoryChannel agent.sinks = loggerSink

agent.sources.loggersource.channels = memoryChannel agent.sources.loggersource.type=exec agent.sources.loggersource.command =tail -F -n+1 /home/test.txt

agent.sinks.loggerSink.type = org.apache.flume.sink.kafka.KafkaSink

agent.sinks.loggerSink.channel = memoryChannel agent.sinks.loggerSink.kafka.topic = logger agent.sinks.loggerSink.kafka.bootstrap.servers = localhost:9092 agent.sinks.loggerSink.kafka.flumeBatchSize = 20 agent.sinks.loggerSink.kafka.producer.acks = 1 agent.sinks.loggerSink.kafka.producer.linger.ms = 1 agent.sinks.loggerSink.kafka.producer.compression.type = snappy

agent.channels.memoryChannel.type = memory agent.channels.memoryChannel.keep-alive = 60 agent.channels.memoryChannel.capacity = 1000000

#Flume启动命令 bin/flume-ng agent -n agent -c conf -f conf/flume-conf.properties & #Kafka的启动命令 bin/kafka-server-start.sh config/server.properties &

#Kafka缓存数据之后,将通过Spark Streaming接收数据。之后存入到hbase中

About

kafka缓存数据,SparkStreaming接收处理导入Hbase

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published