forked from Samsung/ONE
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[onert] Add FullyConnected Op on xnnpack (Samsung#5230)
Add FullyConnected Op on xnnpack for float32 ONE-DCO-1.0-Signed-off-by: Yongseop Kim <[email protected]>
- Loading branch information
1 parent
b425875
commit d262184
Showing
8 changed files
with
242 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
138 changes: 138 additions & 0 deletions
138
runtime/onert/backend/xnnpack/ops/FullyConnectedLayer.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
/* | ||
* Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include "FullyConnectedLayer.h" | ||
|
||
#include "ir/Padding.h" | ||
|
||
namespace onert | ||
{ | ||
namespace backend | ||
{ | ||
namespace xnnpack | ||
{ | ||
namespace ops | ||
{ | ||
|
||
FullyConnectedLayer::FullyConnectedLayer(const std::shared_ptr<ExternalContext> external_context) | ||
: Layer(external_context), _input(nullptr), _kernel(nullptr), _bias(nullptr), _output(nullptr), | ||
_activation(ir::Activation::NONE) | ||
{ | ||
// DO NOTHING | ||
} | ||
|
||
void FullyConnectedLayer::configure(const IPortableTensor *input, const IPortableTensor *weights, | ||
const IPortableTensor *bias, ir::Activation activation, | ||
IPortableTensor *output) | ||
{ | ||
_input = input; | ||
_kernel = weights; | ||
_bias = bias; | ||
_activation = activation; | ||
_output = output; | ||
|
||
// TODO Support not nhwc layer | ||
assert(_input->layout() == ir::Layout::NHWC); | ||
|
||
assert(_activation == ir::Activation::NONE || _activation == ir::Activation::RELU || | ||
_activation == ir::Activation::RELU1 || _activation == ir::Activation::RELU6); | ||
} | ||
|
||
void FullyConnectedLayer::run() | ||
{ | ||
assert(_external_context && _external_context->getThreadPool()); | ||
if (!_setup) | ||
{ | ||
_setup = setup(); | ||
assert(_setup); | ||
} | ||
|
||
if (_input->data_type() == OperandType::FLOAT32) | ||
{ | ||
enum xnn_status status = xnn_run_operator(_kernel_op, _external_context->getThreadPool()); | ||
if (status != xnn_status_success) | ||
{ | ||
throw std::runtime_error{"failed to run FP32 FullyConnected operator"}; | ||
} | ||
} | ||
else | ||
{ | ||
throw std::runtime_error{"XNNPACK FC: unsupported data type"}; | ||
} | ||
} | ||
|
||
bool FullyConnectedLayer::create() | ||
{ | ||
float output_activation_min = 0.f, output_activation_max = 0.f; | ||
CalculateActivationRange<float>(_activation, &output_activation_min, &output_activation_max); | ||
|
||
const auto &kernel_shape = _kernel->getShape(); | ||
assert(kernel_shape.rank() == 2); | ||
uint32_t output_channels = kernel_shape.dim(0); | ||
uint32_t input_channels = kernel_shape.dim(1); | ||
|
||
const auto &input_shape = _input->getShape(); | ||
const auto &output_shape = _output->getShape(); | ||
uint32_t flag = 0; | ||
if (input_shape.rank() != output_shape.rank()) | ||
{ | ||
flag |= XNN_FLAG_TENSORFLOW_RESHAPE_2D; | ||
assert(input_shape.num_elements() % input_channels == 0); | ||
} | ||
else | ||
{ | ||
assert(static_cast<uint32_t>(input_shape.dim(input_shape.rank() - 1)) == input_channels); | ||
} | ||
|
||
assert(_kernel && _kernel->buffer()); | ||
const float *kernel_buffer = reinterpret_cast<const float *>(_kernel->buffer()); | ||
const float *bias_buffer = (_bias) ? reinterpret_cast<const float *>(_bias->buffer()) : nullptr; | ||
|
||
enum xnn_status status = xnn_create_fully_connected_nc_f32( | ||
input_channels, output_channels, input_channels /* input stride */, | ||
output_channels /* output stride */, kernel_buffer, bias_buffer, output_activation_min, | ||
output_activation_max, flag, &_kernel_op); | ||
if (status != xnn_status_success) | ||
{ | ||
throw std::runtime_error{"failed to create FP32 FullyConnected operator"}; | ||
} | ||
assert(_kernel_op != nullptr); | ||
return true; | ||
} | ||
|
||
bool FullyConnectedLayer::setup() | ||
{ | ||
if (_input->buffer() == nullptr || _output->buffer() == nullptr) | ||
{ | ||
// it could be models's input or output | ||
return false; | ||
} | ||
|
||
uint32_t batch_size = _input->getShape().num_elements() / _kernel->getShape().dim(1); | ||
enum xnn_status status = xnn_setup_fully_connected_nc_f32( | ||
_kernel_op, batch_size, reinterpret_cast<const float *>(_input->buffer()), | ||
reinterpret_cast<float *>(_output->buffer()), _external_context->getThreadPool()); | ||
if (status != xnn_status_success) | ||
{ | ||
throw std::runtime_error{"failed to create FP32 FullyConnected operator"}; | ||
} | ||
return true; | ||
} | ||
|
||
} // namespace ops | ||
} // namespace xnnpack | ||
} // namespace backend | ||
} // namespace onert |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
/* | ||
* Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#ifndef __ONERT_BACKEND_XNNPACK_OPS_FULLY_CONNECTED_LAYER_H__ | ||
#define __ONERT_BACKEND_XNNPACK_OPS_FULLY_CONNECTED_LAYER_H__ | ||
|
||
#include "Layer.h" | ||
|
||
#include <xnnpack.h> | ||
|
||
namespace onert | ||
{ | ||
namespace backend | ||
{ | ||
namespace xnnpack | ||
{ | ||
namespace ops | ||
{ | ||
|
||
class FullyConnectedLayer : public Layer | ||
{ | ||
public: | ||
FullyConnectedLayer(const std::shared_ptr<ExternalContext> external_context); | ||
|
||
public: | ||
void configure(const IPortableTensor *input, const IPortableTensor *_kernel, | ||
const IPortableTensor *bias, ir::Activation activation, IPortableTensor *output); | ||
|
||
void run() override; | ||
|
||
bool create() override; | ||
bool setup() override; | ||
|
||
private: | ||
const IPortableTensor *_input; | ||
const IPortableTensor *_kernel; | ||
const IPortableTensor *_bias; | ||
IPortableTensor *_output; | ||
|
||
ir::Activation _activation; | ||
}; | ||
|
||
} // namespace ops | ||
} // namespace xnnpack | ||
} // namespace backend | ||
} // namespace onert | ||
|
||
#endif // __ONERT_BACKEND_XNNPACK_OPS_FULLY_CONNECTED_LAYER_H__ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters