forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Check in seq_flow_lite: add the pQRNN model (tensorflow#10475)
- Loading branch information
Showing
9 changed files
with
698 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
# Copyright 2020 The TensorFlow Authors All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
# Lint as: python3 | ||
"""Layers for embedding.""" | ||
import tensorflow as tf | ||
|
||
from layers import base_layers # import seq_flow_lite module | ||
from layers import dense_layers # import seq_flow_lite module | ||
from layers import quantization_layers # import seq_flow_lite module | ||
|
||
|
||
class AttentionPooling(base_layers.BaseLayer): | ||
"""A basic attention pooling layer.""" | ||
|
||
def __init__(self, scalar=True, **kwargs): | ||
self.scalar = scalar | ||
# Attention logits should not have activation post linear layer so it can | ||
# be positive or negative. This would enable the attention distribution to | ||
# be anything that the network likes. Using relu activation makes the | ||
# attention distribution biased towards uniform distribution. | ||
# This gets better results for attention pooling. Though some outputs are | ||
# emphasized for making classification decision, all other outputs have | ||
# a non zero probability of influencing the class. This seems to result | ||
# in better backprop. | ||
self.attention = dense_layers.BaseQDenseVarLen(units=1, rank=3, **kwargs) | ||
self.qactivation = quantization_layers.ActivationQuantization(**kwargs) | ||
super(AttentionPooling, self).__init__(**kwargs) | ||
|
||
def build(self, input_shapes): | ||
self.feature_size = input_shapes[-1] | ||
|
||
def call(self, inputs, mask, inverse_normalizer): | ||
self._assert_rank_and_type(inputs, 3) | ||
self._assert_rank_and_type(mask, 3) | ||
batch_size = self.get_batch_dimension(inputs) | ||
attn_logits = self.attention(inputs, mask, inverse_normalizer) | ||
if self.parameters.mode not in [base_layers.PREDICT, base_layers.TFLITE]: | ||
invalid_mask = (1 - mask) * self.parameters.invalid_logit | ||
attn_logits = attn_logits * mask + invalid_mask | ||
attn_logits = tf.reshape(attn_logits, [batch_size, -1]) | ||
attention = tf.nn.softmax(attn_logits, axis=-1) | ||
attention = self.qrange_sigmoid(attention, tf_only=True) | ||
if self.parameters.mode in [base_layers.PREDICT, base_layers.TFLITE]: | ||
inputs = tf.reshape(inputs, [-1, self.feature_size]) | ||
else: | ||
attention = tf.expand_dims(attention, axis=1) | ||
pre_logits = self.qactivation(tf.matmul(attention, inputs)) | ||
return tf.reshape(pre_logits, [batch_size, self.feature_size]) | ||
|
||
|
||
class TreeInductionLayer(base_layers.BaseLayer): | ||
"""A basic tree induction layer.""" | ||
|
||
def __init__(self, **kwargs): | ||
self.qactivation = quantization_layers.ActivationQuantization(**kwargs) | ||
super(TreeInductionLayer, self).__init__(**kwargs) | ||
|
||
def call(self, keys, queries, sequence_length): | ||
key_dim = keys.get_shape().as_list()[-1] | ||
query_dim = queries.get_shape().as_list()[-1] | ||
assert key_dim == query_dim, "Last dimension of keys/queries should match." | ||
|
||
if self.parameters.mode not in [base_layers.PREDICT, base_layers.TFLITE]: | ||
sequence_mask = tf.sequence_mask( | ||
sequence_length, maxlen=tf.shape(keys)[1], dtype=tf.float32) | ||
sequence_mask = tf.expand_dims(sequence_mask, axis=2) | ||
attn_mask = tf.matmul(sequence_mask, sequence_mask, transpose_b=True) | ||
|
||
attn_logits = self.qactivation(tf.matmul(keys, queries, transpose_b=True)) | ||
invalid_attn_mask = (1 - attn_mask) * self.parameters.invalid_logit | ||
return attn_logits * attn_mask + invalid_attn_mask | ||
else: | ||
assert self.get_batch_dimension(keys) == 1 | ||
assert self.get_batch_dimension(queries) == 1 | ||
keys = tf.reshape(keys, [-1, key_dim]) | ||
queries = tf.reshape(queries, [-1, key_dim]) | ||
|
||
result = self.qactivation(tf.matmul(keys, queries, transpose_b=True)) | ||
# TODO(b/171063452): Bug needs to be fixed to handle this correctly. | ||
# seq_dim = tf.shape(result)[1] | ||
# result = tf.reshape(result, [1, seq_dim, seq_dim]) | ||
return result |
Oops, something went wrong.