Skip to content

syuctzhaoyang/deeplearning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

使用python语言完成深度学习

机器学习和深度学习本质都是最优化

一个最优化问题通常有两个最基本的因素

1.目标函数,也就是你希望什么东西的什么指标达到最好;机器学习和深度学习里通常指代价函数,即(预测值-真实值)的平方和。有时代价函数要乘以0.5,是为了对代价函数求导时,弥合求导下来的2。要是在除以样本数m,是为了求出样本的平均误差,本质上没什么用。

  1. 优化对象,你期望通过改变哪些因素来使你的目标函数达到最优。机器学习和深度学习里通常对代价函数进行梯度求导,再乘以学习率(步长),修正w,b等参数值,以达到代价函数值的作用。当代价函数值缩小时,称迭代是收敛的。当代价函数值小于给定的值时,迭代结束。

函数的书写规范

  def threshold_function(x: float) -> int:
     y = x > 0
     return y.astype(int)

字典类型的两种添加方法

  network = {}
  network['w1'] = np.array([[0.1,0.3,0.5],[0.2,0.4,0.6]])
  network2={'w1':  np.array([[0.1,0.3,0.5],[0.2,0.4,0.6]])}

均方误差(mse)是计算回归问题的loss,交叉熵(cross entropy)是计算分类问题的loss

方差,标准差,均方误差计算方法,其中方差,标准差是计算数据距平均数的离散程度,均方误差计算数据距真实值的距离

  import numpy as np

  x = [100,80,90,70,60]
  # 1.方差(varance)
  fangcha = np.var(x)
  print(fangcha)

  #2.标准差(std)
  biaozhuncha = np.std(x)
  print(biaozhuncha)    

  #3.平均平方误差(mse)
  print((0.5 * np.sum((x - np.array([90,80,70,80,80])) ** 2)))

交叉熵(cross entropy)公式

  def cross_entropy_err(y_hat: list, y: list) -> float:
     delta = 1e-8
     return -np.sum(y * np.log(y_hat + delta))
  # y_hat 为预测值,y为真实值,即target

直接计算交叉熵,值太大,不利于比较,通常计算交叉熵之前使用softmax函数,在保证关系不变的情况下缩小计算数值

softmax函数

  def softmax_function(x: float) -> float:
     return np.exp(x) / np.sum(np.exp(x))

softmax函数与交叉熵完整示例

  x = np.array([90,80,80,80,60])   # x 为计算出来的值
 y = np.array([1,0,1,0,0])   # y 为真实值,通常交叉熵(cross entropy)是计算分类问题,y通常为one-hot类型
  
  def softmax_function(x: float) -> float:
     return np.exp(x) / np.sum(np.exp(x))  
     
  def cross_entropy_err(y_hat: list, y: list) -> float:
     delta = 1e-8
     return -np.sum(y * np.log(y_hat + delta))
     
   print(cross_entropy_err(softmax_function(x), y))
  
  import tensorflow as tf

sparse_categorical_crossentropy计算稀疏分类交叉熵说明

  #凡是有sparse字样的,y_true为标量,系统会自动转换成one-hot编码,y_pred为向量组合
  # 0 <----> [0.9, 0.05, 0.05],前面的0表示序号为0的分类,后面数字是序号的softmax值
  loss = tf.keras.losses.sparse_categorical_crossentropy(
      y_true=tf.constant([0, 1, 2]),
      y_pred=tf.constant([[0.9, 0.05, 0.05], [0.05, 0.89, 0.06], [0.05, 0.01, 0.94]]))
  print('Loss: ', loss.numpy())

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages