Skip to content

Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance

License

Notifications You must be signed in to change notification settings

szninjacat/champ

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance

1Nanjing University 2Fudan University 3Alibaba Group
*Equal Contribution +Corresponding Author
head.mp4

Framework

framework

Installation

  • System requirement: Ubuntu20.04
  • Tested GPUs: A100

Create conda environment:

  conda create -n champ python=3.10
  conda activate champ

Install packages with pip:

  pip install -r requirements.txt

Download pretrained models

  1. Download pretrained weight of base models:

  2. Download our checkpoints:
    Our checkpoints consist of denoising UNet, guidance encoders, Reference UNet, and motion module.

Finally, these pretrained models should be organized as follows:

./pretrained_models/
|-- champ
|   |-- denoising_unet.pth
|   |-- guidance_encoder_depth.pth
|   |-- guidance_encoder_dwpose.pth
|   |-- guidance_encoder_normal.pth
|   |-- guidance_encoder_semantic_map.pth
|   |-- reference_unet.pth
|   `-- motion_module.pth
|-- image_encoder
|   |-- config.json
|   `-- pytorch_model.bin
|-- sd-vae-ft-mse
|   |-- config.json
|   |-- diffusion_pytorch_model.bin
|   `-- diffusion_pytorch_model.safetensors
`-- stable-diffusion-v1-5
    |-- feature_extractor
    |   `-- preprocessor_config.json
    |-- model_index.json
    |-- unet
    |   |-- config.json
    |   `-- diffusion_pytorch_model.bin
    `-- v1-inference.yaml

Inference

We have provided several sets of example data for inference. Please first download and place them in the example_data folder. Here is the command for inference:

  python inference.py --config configs/inference.yaml

Animation results will be saved in results folder. You can change the reference image or the guidance motion by modifying inference.yaml.

You can also extract the driving motion from any videos and then render with Blender. We will later provide the instructions and scripts for this.

Acknowledgements

We thank the authors of MagicAnimate, Animate Anyone, and AnimateDiff for their excellent work. Our project is built upon Moore-AnimateAnyone, and we are grateful for their open-source contributions.

Citation

If you find our work useful for your research, please consider citing the paper:

@misc{zhu2024champ,
      title={Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance}, 
      author={Shenhao Zhu and Junming Leo Chen and Zuozhuo Dai and Yinghui Xu and Xun Cao and Yao Yao and Hao Zhu and Siyu Zhu},
      year={2024},
      eprint={2403.14781},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

About

Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%