Skip to content

t330883522/zipline

Repository files navigation

Zipline

Zipline是QUANTOPIAN开发的算法交易库。这是一个事件驱动,支持回测和实时交易的系统。 Zipline目前有一个免费的回测平台,可以托管平台建立和执行交易策略。为直接使用A股数据进行回测,小幅度进行了改动(当前不支持分时回测)。

特别说明

  • 仅在Windows10操作系统下完成测试。参考环境
  • Windows10 64位
  • Anaconda3 64位
  • python 3.6.3
  • Visual Studio Community 2017

安装

  • 安装本频道的cswd odo blaze empyrical
  • 转移至`setup.py`所在的安装目录
  • python setup.py install

增加模块

  • 从公共网站提取并更新A股数据(使用Windows任务计划程序)
  • 添加基础数据fundamentals模块
  • 增加bulitin模块
  • 整合talib,增加quantalib模块

基础数据

  • 股票日线交易数据
  • 指数日线交易数据
  • 融资融券
  • 证监会行业、国证行业
  • 财务数据及指标
  • 股票概念

使用Windows计划任务管理,在指定时段自动采集更新数据

Fundamentals

Fundamentals是一个容器类,类似Quantopian Fundamental Data,包含pipeline所需的基本数据。如资产负债表、利润表、现金流量表、财务指标及行业分类等等,暂不包含估值部分。其属性或是单个绑定列,或是数据集,以此生成pipeline中常用的自定义因子(Factor),过滤器(Filter)或是分类器(Classifier)。

builtin

此模块包含常用的自定义因子、过滤器、分类器,以及通用的总体筛选函数。

quantalib

整合适用于pipelinetalib

回测案例

%load_ext zipline
%%zipline --start 2017-1-1 --end 2017-4-20 --capital-base 100000

from six import viewkeys
from zipline.api import (
    attach_pipeline,
    date_rules,
    order_target_percent,
    pipeline_output,
    record,
    schedule_function,
)
from zipline.finance import commission
from zipline.pipeline import Pipeline
from zipline.pipeline.factors import RSI


def make_pipeline():
    rsi = RSI()
    return Pipeline(
        columns={
            'longs': rsi.top(3),
            'shorts': rsi.bottom(3),
        },
    )


def rebalance(context, data):

    # Pipeline data will be a dataframe with boolean columns named 'longs' and
    # 'shorts'.
    pipeline_data = context.pipeline_data
    all_assets = pipeline_data.index

    longs = all_assets[pipeline_data.longs]
    shorts = all_assets[pipeline_data.shorts]

    record(universe_size=len(all_assets))

    # Build a 2x-leveraged, equal-weight, long-short portfolio.
    one_third = 1.0 / 3.0
    for asset in longs:
        order_target_percent(asset, one_third)

    for asset in shorts:
        order_target_percent(asset, -one_third)

    # Remove any assets that should no longer be in our portfolio.
    portfolio_assets = longs | shorts
    positions = context.portfolio.positions
    for asset in viewkeys(positions) - set(portfolio_assets):
        # This will fail if the asset was removed from our portfolio because it
        # was delisted.
        if data.can_trade(asset):
            order_target_percent(asset, 0)


def initialize(context):
    attach_pipeline(make_pipeline(), 'my_pipeline')

    # Rebalance each day.  In daily mode, this is equivalent to putting
    # `rebalance` in our handle_data, but in minute mode, it's equivalent to
    # running at the start of the day each day.
    schedule_function(rebalance, date_rules.every_day())

    # Explicitly set the commission to the "old" value until we can
    # rebuild example data.
    # github.com/quantopian/zipline/blob/master/tests/resources/
    # rebuild_example_data#L105
    context.set_commission(commission.PerShare(cost=.0075, min_trade_cost=1.0))


def before_trading_start(context, data):
    context.pipeline_data = pipeline_output('my_pipeline')
[2017-12-09 20:29:33.920809] INFO: Loader: Read benchmark and treasury data for 000300 from 1990-10-31 to 2017-12-08
[2017-12-09 20:29:49.959577] INFO: Performance: after split: asset: Equity(002836 [新宏泽]), amount: 1494.0, cost_basis: 30.03, last_sale_price: 62.300000000000004
[2017-12-09 20:29:49.959577] INFO: Performance: returning cash: 0.0
[2017-12-09 20:29:50.462507] INFO: Performance: after split: asset: Equity(300213 [佳讯飞鸿]), amount: -726.0, cost_basis: 11.61, last_sale_price: 22.830000000000002
[2017-12-09 20:29:50.463506] INFO: Performance: returning cash: 0.0
[2017-12-09 20:29:50.903947] INFO: Performance: after split: asset: Equity(000711 [京蓝科技]), amount: -402.0, cost_basis: 15.25, last_sale_price: 31.11
[2017-12-09 20:29:50.903947] INFO: Performance: returning cash: 0.0
[2017-12-09 20:29:52.262802] INFO: Performance: Simulated 71 trading days out of 71.
[2017-12-09 20:29:52.262802] INFO: Performance: first open: 2017-01-03 01:31:00+00:00
[2017-12-09 20:29:52.262802] INFO: Performance: last close: 2017-04-20 07:00:00+00:00

安装使用

后续

  • 修正补充
  • 进一步完善TensorBoard
  • 整合使用tensorflow

交流