-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuild_uls.py
308 lines (266 loc) · 10.1 KB
/
build_uls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#!/usr/bin/env python
from rdkit import DataStructs
from rdkit.Chem import AllChem as Chem
from rdkit.Chem import Descriptors
from rdkit.Chem import MACCSkeys
from rdkit.Chem import rdmolops
from rdkit.Chem import Lipinski
from rdkit.Chem import Crippen
from rdkit.Chem.MolStandardize import rdMolStandardize
from dimorphite_dl import DimorphiteDL
import pandas as pd
import os
import argparse
class Curate():
def __init__(self):
self.lfc = rdMolStandardize.LargestFragmentChooser()
self.charge = DimorphiteDL(
min_ph=7.3,
max_ph=7.5
)
def __call__(self, smi):
mol = Chem.MolFromSmiles(smi)
mol = rdMolStandardize.Cleanup(mol)
mol = self.lfc.choose(mol)
smi_charged = self.charge.protonate(Chem.MolToSmiles(mol))
return smi_charged
def main(
Ligand_data,
Diverse_ligands,
Diverse_ligands_PS,
Diverse_ligands_PS_maxmin,
Diverse_ligands_sims_maxmin,
Diverse_ligands_len,
**kwargs):
ULS_dir = "output/ULS"
try:
os.makedirs(ULS_dir)
except FileExistsError:
pass
filename, filetype = os.path.splitext(Ligand_data)
if filetype == ".smi":
with open(Ligand_data, 'r') as f:
List_Smile = [smi.rstrip() for smi in f]
elif filetype == ".csv":
df_smi = pd.read_csv(Ligand_data)
List_Smile = list(df_smi["SMILES"])
else:
raise Exception("supported input file format: .smi, .csv")
smi_preprocessed = []
if kwargs['curate']:
preprocess = Curate()
for i, smi in enumerate(List_Smile):
if Chem.MolFromSmiles(smi):
smi_list = preprocess(smi)
smi_preprocessed.extend(smi_list)
else:
print("SMILES failed in MolFromSmiles")
print(List_Smile[i])
continue
else:
smi_preprocessed = List_Smile
suppl = [Chem.MolFromSmiles(smi) for smi in smi_preprocessed]
List_SMN = []
for i in range(0, len(suppl)):
MW = Descriptors.MolWt(suppl[i])
NR = Lipinski.NumRotatableBonds(suppl[i])
list_smn = []
list_smn.append(smi_preprocessed[i])
list_smn.append(MW)
list_smn.append(NR)
List_SMN.append(list_smn)
df_SMN = pd.DataFrame(List_SMN, columns=['SMILES', 'MW', 'NR'])
df_filter = df_SMN[(df_SMN['MW'] < 600) & (df_SMN['NR'] <= 20)]
df_Smile = pd.DataFrame(list(df_filter['SMILES']), columns=['SMILES'])
df_container = df_Smile.copy()
Diverse_Ligands = []
while True:
df_start = df_container
if len(df_start) != 0:
list_start = list(df_start['SMILES'])
Diverse_Ligands.append(list_start[0])
mol = []
for i in range(0, len(list_start)):
m = Chem.MolFromSmiles(list_start[i])
mol.append(m)
fps = [MACCSkeys.GenMACCSKeys(x) for x in mol]
list_ssf = []
for j in range(0, len(list_start)):
x = DataStructs.FingerprintSimilarity(fps[0], fps[j])
list_fps = []
list_fps.append(df_start.iloc[0, 0])
list_fps.append(df_start.iloc[j, 0])
list_fps.append(x)
list_ssf.append(list_fps)
df_SSF = pd.DataFrame(
list_ssf, columns=[
'SMILES1', 'SMILES2', 'Fps'])
df_filtered = df_SSF[df_SSF['Fps'] < 0.75]['SMILES2']
df_final = pd.DataFrame(list(df_filtered), columns=['SMILES'])
df_container = df_final
else:
break
print('Total Number of Diverse Ligands:' + str(len(Diverse_Ligands)))
df_diverseligands = pd.DataFrame(Diverse_Ligands, columns=['SMILES'])
df_diverseligands.to_csv(os.path.join(ULS_dir, Diverse_ligands), index=None)
list_MW = []
list_NR = []
list_HD = []
list_HA = []
list_FC = []
list_LogP = []
List_Smiles_diverseligands = list(df_diverseligands['SMILES'])
suppl_diverseligands = []
for i in range(0, len(List_Smiles_diverseligands)):
m = Chem.MolFromSmiles(List_Smiles_diverseligands[i])
suppl_diverseligands.append(m)
for i in range(0, len(suppl_diverseligands)):
MW = Descriptors.MolWt(suppl_diverseligands[i])
NR = Lipinski.NumRotatableBonds(suppl_diverseligands[i])
HD = Lipinski.NumHDonors(suppl_diverseligands[i])
HA = Lipinski.NumHAcceptors(suppl_diverseligands[i])
FC = rdmolops.GetFormalCharge(suppl_diverseligands[i])
LogP = Crippen.MolLogP(suppl_diverseligands[i])
list_MW.append(MW)
list_NR.append(NR)
list_HD.append(HD)
list_HA.append(HA)
list_FC.append(FC)
list_LogP.append(LogP)
MW_Max = max(list_MW[i] for i in range(0, len(list_MW)))
MW_Min = min(list_MW[i] for i in range(0, len(list_MW)))
NR_Max = max(list_NR[i] for i in range(0, len(list_NR)))
NR_Min = min(list_NR[i] for i in range(0, len(list_NR)))
HD_Max = max(list_HD[i] for i in range(0, len(list_HD)))
HD_Min = min(list_HD[i] for i in range(0, len(list_HD)))
HA_Max = max(list_HA[i] for i in range(0, len(list_HA)))
HA_Min = min(list_HA[i] for i in range(0, len(list_HA)))
FC_Max = max(list_FC[i] for i in range(0, len(list_FC)))
FC_Min = min(list_FC[i] for i in range(0, len(list_FC)))
LogP_Max = max(list_LogP[i] for i in range(0, len(list_LogP)))
LogP_Min = min(list_LogP[i] for i in range(0, len(list_LogP)))
a = [
MW_Max,
MW_Min,
NR_Max,
NR_Min,
HD_Max,
HD_Min,
HA_Max,
HA_Min,
FC_Max,
FC_Min,
LogP_Max,
LogP_Min]
b = [
'MW_Max',
'MW_Min',
'NR_Max',
'NR_Min',
'HD_Max',
'HD_Min',
'HA_Max',
'HA_Min',
'FC_Max',
'FC_Min',
'LogP_Max',
'LogP_Min']
df_PS_maxmin = pd.DataFrame(a, index=b, columns=['values'])
df_PS_maxmin.to_csv(os.path.join(ULS_dir, Diverse_ligands_PS_maxmin))
def Normalization(x, Max, Min):
if Max == Min:
x = 1
return x
else:
x = float(x - Min) / float(Max - Min)
return x
MW_MCS = []
NR_MCS = []
HD_MCS = []
HA_MCS = []
FC_MCS = []
LogP_MCS = []
for i in range(0, len(List_Smiles_diverseligands)):
mw = Normalization(list_MW[i], MW_Max, MW_Min)
MW_MCS.append(mw)
nr = Normalization(list_NR[i], NR_Max, NR_Min)
NR_MCS.append(nr)
hd = Normalization(list_HD[i], HD_Max, HD_Min)
HD_MCS.append(hd)
ha = Normalization(list_HA[i], HA_Max, HA_Min)
HA_MCS.append(ha)
fc = Normalization(list_FC[i], FC_Max, FC_Min)
FC_MCS.append(fc)
logp = Normalization(list_LogP[i], LogP_Max, LogP_Min)
LogP_MCS.append(logp)
df_diverseligands.insert(1, 'MW', list_MW)
df_diverseligands.insert(2, 'NR', list_NR)
df_diverseligands.insert(3, 'HD', list_HD)
df_diverseligands.insert(4, 'HA', list_HA)
df_diverseligands.insert(5, 'FC', list_FC)
df_diverseligands.insert(6, 'LogP', list_LogP)
df_diverseligands.insert(7, 'MW_MCS', MW_MCS)
df_diverseligands.insert(8, 'NR_MCS', NR_MCS)
df_diverseligands.insert(9, 'HD_MCS', HD_MCS)
df_diverseligands.insert(10, 'HA_MCS', HA_MCS)
df_diverseligands.insert(11, 'FC_MCS', FC_MCS)
df_diverseligands.insert(12, 'LogP_MCS', LogP_MCS)
df_Diverseligands_Ps = df_diverseligands[['SMILES',
'MW',
'MW_MCS',
'NR',
'NR_MCS',
'HD',
'HD_MCS',
'HA',
'HA_MCS',
'FC',
'FC_MCS',
'LogP',
'LogP_MCS']]
df_Diverseligands_Ps.to_csv(os.path.join(ULS_dir, Diverse_ligands_PS), index=None)
LL_Smis = []
fps = [MACCSkeys.GenMACCSKeys(x) for x in suppl_diverseligands]
for i in range(0, len(suppl_diverseligands)):
for j in range(0, len(suppl_diverseligands)):
if i != j:
x = DataStructs.FingerprintSimilarity(fps[i], fps[j])
LL_Smis.append(x)
LL_Sims_Max = max(LL_Smis[i] for i in range(0, len(LL_Smis)))
LL_Sims_Min = min(LL_Smis[i] for i in range(0, len(LL_Smis)))
with open(os.path.join(ULS_dir, Diverse_ligands_sims_maxmin), 'w') as fp:
fp.write(str(LL_Sims_Max) + '\t')
fp.write(str(LL_Sims_Min))
df_DL = pd.read_csv(os.path.join(ULS_dir, Diverse_ligands))
s_list = list(df_DL['SMILES'])
len_s_list = len(s_list)
with open(os.path.join(ULS_dir, Diverse_ligands_len), 'w') as fl:
fl.write(str(len_s_list))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='get unbiased ligand set')
parser.add_argument('--i', help='input actives', default='raw_actives.smi')
parser.add_argument(
'--o1',
help='output diverse ligands',
default='Diverse_ligands.csv')
parser.add_argument(
'--o2',
help='output diverse ligands with property',
default='Diverse_ligands_PS.csv')
parser.add_argument(
'--o3',
help='output max/min property',
default='Diverse_ligands_PS_maxmin.csv')
parser.add_argument(
'--o4',
help='output max/min similarity',
default='Diverse_ligands_sims_maxmin.txt')
parser.add_argument(
'--o5',
help='output number of diverse ligands',
default='Diverse_ligands_len.txt')
parser.add_argument('--curate',
action='store_true',
help='curate raw SMILES')
args = parser.parse_args()
main(args.i, args.o1, args.o2, args.o3, args.o4, args.o5, curate=args.curate)