Skip to content

Latest commit

 

History

History
39 lines (28 loc) · 1.23 KB

File metadata and controls

39 lines (28 loc) · 1.23 KB

tf-keras-stacked-convolutional-autoenconder

  • Implementation of Stacked Convolutional Autoencoder.
  • Evaluated the denoising performance using MNIST.
  • Used Python3.7 + TensorFlow 2.3 + tf.keras.

Settings

  • I recommend to make virtual environment by venv.
    1. python -m venv .venv
  1. Enter to virtual environment .venv/Scripts/activate.ps1 (Windows) or .venv/Scripts/activate (Linux)
  2. pip install -r requirements.txt

Run

  1. python train.py --epochs 20 --batch_size 100 --stacked 1 --snr -40 (defalut options)

    • --epochs or -e: The number of epochs
    • --batch_size or -b: The number of batch size
    • --stacked or -s: 1 or 0 (stacked or not)
    • --snr or -n: The value of SNR for denoising autoencoder. The smaller value is noisy.
  2. python eval.py --dir_model path_to_hdf5 --snr -40

    • --dir_model or -d: path to model.
      • hdf5 file will generate in ../dist/train_conditions/models
    • --snr or n: same to train.py
    • SNR value will printed.

Results

  • Denoising performance improved slightly.
    • SNR comparison:
      • stacked: 9.307
      • no_stacked: 9.184

Others

  • If you have any problems, please let me know.
  • Please send me the pull request if you find wrong.