Skip to content

Implementation of Stacked Convolutional Autoencoder in tf.keras (TensorFlow2.3).

Notifications You must be signed in to change notification settings

temple1026/tf-keras-stacked-convolutional-autoenconder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

tf-keras-stacked-convolutional-autoenconder

  • Implementation of Stacked Convolutional Autoencoder.
  • Evaluated the denoising performance using MNIST.
  • Used Python3.7 + TensorFlow 2.3 + tf.keras.

Settings

  • I recommend to make virtual environment by venv.
    1. python -m venv .venv
  1. Enter to virtual environment .venv/Scripts/activate.ps1 (Windows) or .venv/Scripts/activate (Linux)
  2. pip install -r requirements.txt

Run

  1. python train.py --epochs 20 --batch_size 100 --stacked 1 --snr -40 (defalut options)

    • --epochs or -e: The number of epochs
    • --batch_size or -b: The number of batch size
    • --stacked or -s: 1 or 0 (stacked or not)
    • --snr or -n: The value of SNR for denoising autoencoder. The smaller value is noisy.
  2. python eval.py --dir_model path_to_hdf5 --snr -40

    • --dir_model or -d: path to model.
      • hdf5 file will generate in ../dist/train_conditions/models
    • --snr or n: same to train.py
    • SNR value will printed.

Results

  • Denoising performance improved slightly.
    • SNR comparison:
      • stacked: 9.307
      • no_stacked: 9.184

Others

  • If you have any problems, please let me know.
  • Please send me the pull request if you find wrong.

About

Implementation of Stacked Convolutional Autoencoder in tf.keras (TensorFlow2.3).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages