- Implementation of Stacked Convolutional Autoencoder.
- Evaluated the denoising performance using MNIST.
- Used Python3.7 + TensorFlow 2.3 + tf.keras.
- I recommend to make virtual environment by venv.
python -m venv .venv
- Enter to virtual environment
.venv/Scripts/activate.ps1
(Windows) or.venv/Scripts/activate
(Linux) pip install -r requirements.txt
-
python train.py --epochs 20 --batch_size 100 --stacked 1 --snr -40
(defalut options)- --epochs or -e: The number of epochs
- --batch_size or -b: The number of batch size
- --stacked or -s: 1 or 0 (stacked or not)
- --snr or -n: The value of SNR for denoising autoencoder. The smaller value is noisy.
-
python eval.py --dir_model path_to_hdf5 --snr -40
- --dir_model or -d: path to model.
- hdf5 file will generate in ../dist/train_conditions/models
- --snr or n: same to train.py
- SNR value will printed.
- --dir_model or -d: path to model.
- Denoising performance improved slightly.
- SNR comparison:
- stacked: 9.307
- no_stacked: 9.184
- SNR comparison:
- If you have any problems, please let me know.
- Please send me the pull request if you find wrong.