Skip to content

Commit

Permalink
[Other]Update python && cpp multi_thread examples (PaddlePaddle#876)
Browse files Browse the repository at this point in the history
* Refactor PaddleSeg with preprocessor && postprocessor

* Fix bugs

* Delete redundancy code

* Modify by comments

* Refactor according to comments

* Add batch evaluation

* Add single test script

* Add ppliteseg single test script && fix eval(raise) error

* fix bug

* Fix evaluation segmentation.py batch predict

* Fix segmentation evaluation bug

* Fix evaluation segmentation bugs

* Update segmentation result docs

* Update old predict api and DisableNormalizeAndPermute

* Update resize segmentation label map with cv::INTER_NEAREST

* Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg

* Add multi thread demo

* Add python model clone function

* Add multi thread python && C++ example

* Fix bug

* Update python && cpp multi_thread examples

* Add cpp && python directory

* Add README.md for examples

* Delete redundant code

Co-authored-by: Jason <[email protected]>
  • Loading branch information
felixhjh and jiangjiajun authored Dec 14, 2022
1 parent ce4867d commit ada54bf
Show file tree
Hide file tree
Showing 6 changed files with 336 additions and 41 deletions.
65 changes: 65 additions & 0 deletions fastdeploy/vision/vision_pybind.cc
Original file line number Diff line number Diff line change
Expand Up @@ -37,13 +37,43 @@ void BindVision(pybind11::module& m) {
.def(pybind11::init())
.def_readwrite("data", &vision::Mask::data)
.def_readwrite("shape", &vision::Mask::shape)
.def(pybind11::pickle(
[](const vision::Mask &m) {
return pybind11::make_tuple(m.data, m.shape);
},
[](pybind11::tuple t) {
if (t.size() != 2)
throw std::runtime_error("vision::Mask pickle with invalid state!");

vision::Mask m;
m.data = t[0].cast<std::vector<int32_t>>();
m.shape = t[1].cast<std::vector<int64_t>>();

return m;
}
))
.def("__repr__", &vision::Mask::Str)
.def("__str__", &vision::Mask::Str);

pybind11::class_<vision::ClassifyResult>(m, "ClassifyResult")
.def(pybind11::init())
.def_readwrite("label_ids", &vision::ClassifyResult::label_ids)
.def_readwrite("scores", &vision::ClassifyResult::scores)
.def(pybind11::pickle(
[](const vision::ClassifyResult &c) {
return pybind11::make_tuple(c.label_ids, c.scores);
},
[](pybind11::tuple t) {
if (t.size() != 2)
throw std::runtime_error("vision::ClassifyResult pickle with invalid state!");

vision::ClassifyResult c;
c.label_ids = t[0].cast<std::vector<int32_t>>();
c.scores = t[1].cast<std::vector<float>>();

return c;
}
))
.def("__repr__", &vision::ClassifyResult::Str)
.def("__str__", &vision::ClassifyResult::Str);

Expand All @@ -54,6 +84,24 @@ void BindVision(pybind11::module& m) {
.def_readwrite("label_ids", &vision::DetectionResult::label_ids)
.def_readwrite("masks", &vision::DetectionResult::masks)
.def_readwrite("contain_masks", &vision::DetectionResult::contain_masks)
.def(pybind11::pickle(
[](const vision::DetectionResult &d) {
return pybind11::make_tuple(d.boxes, d.scores, d.label_ids, d.masks, d.contain_masks);
},
[](pybind11::tuple t) {
if (t.size() != 5)
throw std::runtime_error("vision::DetectionResult pickle with Invalid state!");

vision::DetectionResult d;
d.boxes = t[0].cast<std::vector<std::array<float, 4>>>();
d.scores = t[1].cast<std::vector<float>>();
d.label_ids = t[2].cast<std::vector<int32_t>>();
d.masks = t[3].cast<std::vector<vision::Mask>>();
d.contain_masks = t[4].cast<bool>();

return d;
}
))
.def("__repr__", &vision::DetectionResult::Str)
.def("__str__", &vision::DetectionResult::Str);

Expand Down Expand Up @@ -104,6 +152,23 @@ void BindVision(pybind11::module& m) {
.def_readwrite("score_map", &vision::SegmentationResult::score_map)
.def_readwrite("shape", &vision::SegmentationResult::shape)
.def_readwrite("contain_score_map", &vision::SegmentationResult::contain_score_map)
.def(pybind11::pickle(
[](const vision::SegmentationResult &s) {
return pybind11::make_tuple(s.label_map, s.score_map, s.shape, s.contain_score_map);
},
[](pybind11::tuple t) {
if (t.size() != 4)
throw std::runtime_error("vision::SegmentationResult pickle with Invalid state!");

vision::SegmentationResult s;
s.label_map = t[0].cast<std::vector<uint8_t>>();
s.score_map = t[1].cast<std::vector<float>>();
s.shape = t[2].cast<std::vector<int64_t>>();
s.contain_score_map = t[3].cast<bool>();

return s;
}
))
.def("__repr__", &vision::SegmentationResult::Str)
.def("__str__", &vision::SegmentationResult::Str);

Expand Down
14 changes: 14 additions & 0 deletions tutorials/multi_thread/cpp/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
PROJECT(multi_thread_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)

# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")

include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)

# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})

add_executable(multi_thread_demo ${PROJECT_SOURCE_DIR}/multi_thread.cc)
# 添加FastDeploy库依赖
target_link_libraries(multi_thread_demo ${FASTDEPLOY_LIBS} pthread)
79 changes: 79 additions & 0 deletions tutorials/multi_thread/cpp/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# PaddleClas C++部署示例

本目录下提供`infer.cc`快速完成PaddleClas系列模型在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。

在部署前,需确认以下两个步骤

- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

以Linux上ResNet50_vd推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

```bash
mkdir build
cd build
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# 下载ResNet50_vd模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg


# CPU推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 0
# GPU推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 1
# GPU上TensorRT推理
./infer_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 2
```

以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)

## PaddleClas C++接口

### PaddleClas类

```c++
fastdeploy::vision::classification::PaddleClasModel(
const string& model_file,
const string& params_file,
const string& config_file,
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE)
```
PaddleClas模型加载和初始化,其中model_file, params_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
#### Predict函数
> ```c++
> PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk = 1)
> ```
>
> 模型预测接口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **im**: 输入图像,注意需为HWC,BGR格式
> > * **result**: 分类结果,包括label_id,以及相应的置信度, ClassifyResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
> > * **topk**(int):返回预测概率最高的topk个分类结果,默认为1
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
Original file line number Diff line number Diff line change
Expand Up @@ -6,21 +6,44 @@ const char sep = '\\';
const char sep = '/';
#endif

void predict(fastdeploy::vision::classification::PaddleClasModel *model, int thread_id, const std::string& image_file) {
auto im = cv::imread(image_file);

fastdeploy::vision::ClassifyResult res;
if (!model->Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
void Predict(fastdeploy::vision::classification::PaddleClasModel *model, int thread_id, const std::vector<std::string>& images) {
for (auto const &image_file : images) {
auto im = cv::imread(image_file);

fastdeploy::vision::ClassifyResult res;
if (!model->Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}

// print res
std::cout << "Thread Id: " << thread_id << std::endl;
std::cout << res.Str() << std::endl;
}
}

// print res
std::cout << "Thread Id: " << thread_id << std::endl;
std::cout << res.Str() << std::endl;
void GetImageList(std::vector<std::vector<std::string>>* image_list, const std::string& image_file_path, int thread_num){
std::vector<cv::String> images;
cv::glob(image_file_path, images, false);
// number of image files in images folder
size_t count = images.size();
size_t num = count / thread_num;
for (int i = 0; i < thread_num; i++) {
std::vector<std::string> temp_list;
if (i == thread_num - 1) {
for (size_t j = i*num; j < count; j++){
temp_list.push_back(images[j]);
}
} else {
for (size_t j = 0; j < num; j++){
temp_list.push_back(images[i * num + j]);
}
}
(*image_list)[i] = temp_list;
}
}

void CpuInfer(const std::string& model_dir, const std::string& image_file, int thread_num) {
void CpuInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
auto model_file = model_dir + sep + "inference.pdmodel";
auto params_file = model_dir + sep + "inference.pdiparams";
auto config_file = model_dir + sep + "inference_cls.yaml";
Expand All @@ -39,17 +62,20 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file, int t
models.emplace_back(std::move(model.Clone()));
}

std::vector<std::vector<std::string>> image_list(thread_num);
GetImageList(&image_list, image_file_path, thread_num);

std::vector<std::thread> threads;
for (int i = 0; i < thread_num; ++i) {
threads.emplace_back(predict, models[i].get(), i, image_file);
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
}

for (int i = 0; i < thread_num; ++i) {
threads[i].join();
}
}

void GpuInfer(const std::string& model_dir, const std::string& image_file, int thread_num) {
void GpuInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
auto model_file = model_dir + sep + "inference.pdmodel";
auto params_file = model_dir + sep + "inference.pdiparams";
auto config_file = model_dir + sep + "inference_cls.yaml";
Expand All @@ -68,17 +94,20 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file, int t
models.emplace_back(std::move(model.Clone()));
}

std::vector<std::vector<std::string>> image_list(thread_num);
GetImageList(&image_list, image_file_path, thread_num);

std::vector<std::thread> threads;
for (int i = 0; i < thread_num; ++i) {
threads.emplace_back(predict, models[i].get(), i, image_file);
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
}

for (int i = 0; i < thread_num; ++i) {
threads[i].join();
}
}

void TrtInfer(const std::string& model_dir, const std::string& image_file, int thread_num) {
void TrtInfer(const std::string& model_dir, const std::string& image_file_path, int thread_num) {
auto model_file = model_dir + sep + "inference.pdmodel";
auto params_file = model_dir + sep + "inference.pdiparams";
auto config_file = model_dir + sep + "inference_cls.yaml";
Expand All @@ -99,9 +128,12 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file, int t
models.emplace_back(std::move(model.Clone()));
}

std::vector<std::vector<std::string>> image_list(thread_num);
GetImageList(&image_list, image_file_path, thread_num);

std::vector<std::thread> threads;
for (int i = 0; i < thread_num; ++i) {
threads.emplace_back(predict, models[i].get(), i, image_file);
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
}

for (int i = 0; i < thread_num; ++i) {
Expand All @@ -112,7 +144,7 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file, int t
int main(int argc, char **argv) {
if (argc < 5) {
std::cout << "Usage: infer_demo path/to/model path/to/image run_option thread_num, "
"e.g ./infer_demo ./ResNet50_vd ./test.jpeg 0 3"
"e.g ./multi_thread_demo ./ResNet50_vd ./test.jpeg 0 3"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
Expand Down
77 changes: 77 additions & 0 deletions tutorials/multi_thread/python/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# PaddleClas模型 Python部署示例

在部署前,需确认以下两个步骤

- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

本目录下提供`infer.py`快速完成ResNet50_vd在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成

```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/classification/paddleclas/python

# 下载ResNet50_vd模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg

# CPU推理
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
# GPU推理
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待)
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1
# IPU推理(注意:IPU推理首次运行会有序列化模型的操作,有一定耗时,需要耐心等待)
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device ipu --topk 1
```

运行完成后返回结果如下所示
```bash
ClassifyResult(
label_ids: 153,
scores: 0.686229,
)
```

## PaddleClasModel Python接口

```python
fd.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```

PaddleClas模型加载和初始化,其中model_file, params_file为训练模型导出的Paddle inference文件,具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)

**参数**

> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
### predict函数

> ```python
> PaddleClasModel.predict(input_image, topk=1)
> ```
>
> 模型预测结口,输入图像直接输出分类topk结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据,注意需为HWCBGR格式
> > * **topk**(int):返回预测概率最高的topk个分类结果,默认为1
> **返回**
>
> > 返回`fastdeploy.vision.ClassifyResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
## 其它文档
- [PaddleClas 模型介绍](..)
- [PaddleClas C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
Loading

0 comments on commit ada54bf

Please sign in to comment.