Skip to content

Commit

Permalink
fixed tests
Browse files Browse the repository at this point in the history
  • Loading branch information
minaskar committed Oct 29, 2020
1 parent 0f84c43 commit 124b098
Show file tree
Hide file tree
Showing 4 changed files with 7 additions and 7 deletions.
2 changes: 1 addition & 1 deletion docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
author = 'Minas Karamanis'

# The full version, including alpha/beta/rc tags
release = '2.1.0'
release = '2.1.1'

# -- General configuration ---------------------------------------------------

Expand Down
2 changes: 1 addition & 1 deletion docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ Copyright 2019-2020 Minas Karamanis and contributors.
Changelog
=========

**2.1.0 (29/10/20)**
**2.1.1 (29/10/20)**

- Added ``blobs`` interface to track arbitrary metadata.
- Updated ``GlobalMove`` and multimodal example.
Expand Down
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

setuptools.setup(
name="zeus-mcmc",
version="2.1.0",
version="2.1.1",
author="Minas Karamanis",
author_email="[email protected]",
description="zeus: Lightning Fast MCMC",
Expand Down
8 changes: 4 additions & 4 deletions zeus/tests/test_samples.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,11 @@ def test_chain(seed=42):
ndim = np.random.randint(2,200)
nwalkers = 2 * ndim
s = samples(ndim, nwalkers)
s.extend(nsteps)
s.extend(nsteps, None)
for i in range(nsteps):
x = np.random.rand(nwalkers,ndim)
z = np.random.rand(nwalkers)
s.save(x, z)
s.save(x, z, None)
assert np.shape(s.chain) == (nsteps,nwalkers,ndim)
assert np.shape(s.logprob) == (nsteps,nwalkers)

Expand All @@ -25,11 +25,11 @@ def test_flatten(seed=42):
ndim = np.random.randint(2,200)
nwalkers = 2 * ndim
s = samples(ndim,nwalkers)
s.extend(nsteps)
s.extend(nsteps, None)
for i in range(nsteps):
x = np.random.rand(nwalkers,ndim)
z = np.random.rand(nwalkers)
s.save(x, z)
s.save(x, z, None)
assert np.shape(s.flatten()) == (nsteps*nwalkers,ndim)
burn = np.random.randint(2,100)
thin = np.random.randint(1,10)
Expand Down

0 comments on commit 124b098

Please sign in to comment.