This repository contains the implementation of Mip-VoG described in D. Hu, Z. Zhang, T. Hou, T. Liu, H. Fu, M. Gong: Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering. International Conference on Computer Vision (ICCV) 2023.
To train a single scene with mip-vog, run
python run.py --config configs/nerf_ms/"$scene".py --resolution 512 --mip_train
Test the model with mip-vog, run
python run.py --config configs/nerf_ms/"$scene".py --resolution 512 --mip_train --render_only --render_test --mip_test
Test the model with voxel grids but without mipmapping, run
python run.py --config configs/nerf_ms/"$scene".py --resolution 512 --mip_train --render_only --render_test
If you find it useful, please consider citing:
@InProceedings{Hu_2023_ICCV,
author = {Hu, Dongting and Zhang, Zhenkai and Hou, Tingbo and Liu, Tongliang and Fu, Huan and Gong, Mingming},
title = {Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2023},
pages = {17772-17783}
}
The training code base is origined from DVGO, and web viewer base is origined from SNeRG.