-
Notifications
You must be signed in to change notification settings - Fork 55
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
425 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
import os | ||
import shutil | ||
import tensorflow as tf | ||
import tensorflow_datasets as tfds | ||
import tabnet | ||
|
||
if not os.path.exists('mnist'): | ||
os.makedirs('mnist') | ||
|
||
BATCH_SIZE = 128 | ||
|
||
|
||
def transform(ds): | ||
features = ds['image'] | ||
labels = ds['label'] | ||
|
||
x = tf.reshape(features, [-1]) | ||
x = tf.cast(x, tf.float32) / 255. | ||
y = tf.one_hot(labels, 10) | ||
return x, y | ||
|
||
|
||
ds_train, ds_test = tfds.load(name="mnist", split=[tfds.Split.TRAIN, tfds.Split.TEST], data_dir='mnist', | ||
shuffle_files=False) | ||
ds_train = ds_train.shuffle(60000) | ||
ds_train = ds_train.map(transform) | ||
ds_train = ds_train.batch(BATCH_SIZE) | ||
|
||
ds_test = ds_test.map(transform) | ||
ds_test = ds_test.batch(BATCH_SIZE) | ||
|
||
# Use Group Normalization for small batch sizes | ||
model = tabnet.StackedTabNetClassifier(feature_columns=None, num_classes=10, num_layers=2, | ||
num_features=784, | ||
feature_dim=[16, 16], output_dim=[16, 16], # Can be lists, specific for each layer | ||
num_decision_steps=3, relaxation_factor=1.5, | ||
sparsity_coefficient=0., batch_momentum=0.98, | ||
virtual_batch_size=None, norm_type='group', | ||
num_groups=-1) | ||
|
||
lr = tf.keras.optimizers.schedules.ExponentialDecay(0.001, decay_steps=500, decay_rate=0.9, staircase=False) | ||
optimizer = tf.keras.optimizers.Adam(lr) | ||
model.compile(optimizer, loss='categorical_crossentropy', metrics=['accuracy']) | ||
|
||
model.fit(ds_train, epochs=5, validation_data=ds_test, verbose=2) | ||
|
||
model.summary() | ||
|
||
print() | ||
if os.path.exists('stacked_mnist_logs/'): | ||
shutil.rmtree('stacked_mnist_logs/') | ||
|
||
""" Save the images of the feature masks """ | ||
# Force eager execution mode to generate the masks | ||
x, y = next(iter(ds_train)) | ||
_ = model(x) | ||
|
||
writer = tf.summary.create_file_writer("stacked_mnist_logs/") | ||
with writer.as_default(): | ||
for i, mask_list in enumerate(model.stacked_tabnet.feature_selection_masks): | ||
for j, mask in enumerate(mask_list): | ||
print("Saving mask {} of shape {}".format((i + 1) * (j + 1), mask.shape)) | ||
tf.summary.image('mask_at_iter_{}'.format((i + 1) * (j + 1)), step=0, data=mask, max_outputs=1) | ||
writer.flush() | ||
|
||
agg_mask_list = model.stacked_tabnet.aggregate_feature_selection_mask | ||
for i, agg_mask in enumerate(agg_mask_list): | ||
print("Saving aggregate mask of shape", agg_mask.shape) | ||
tf.summary.image("Aggregate Mask {}".format(i + 1), step=0, data=agg_mask, max_outputs=1) | ||
writer.flush() | ||
|
||
writer.close() |
Oops, something went wrong.