forked from BlinkDL/RWKV-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
117 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
######################################################################################################## | ||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM | ||
######################################################################################################## | ||
|
||
# this is for verifying the results of different models and make sure they agree with each other | ||
|
||
import os, sys, types | ||
import numpy as np | ||
import torch | ||
np.set_printoptions(precision=4, suppress=True, linewidth=200) | ||
try: | ||
os.environ["CUDA_VISIBLE_DEVICES"] = sys.argv[1] | ||
except: | ||
pass | ||
torch.backends.cudnn.benchmark = True | ||
torch.backends.cudnn.allow_tf32 = False | ||
torch.backends.cuda.matmul.allow_tf32 = False | ||
|
||
os.environ['RWKV_FLOAT_MODE'] = 'bf16' # bf16 or fp32 | ||
os.environ['RWKV_RUN_DEVICE'] = 'cuda' # currently model_train requires CUDA | ||
RUN_DEVICE = os.environ['RWKV_RUN_DEVICE'] | ||
|
||
TOKEN_MODE = 'pile' | ||
|
||
if TOKEN_MODE == 'pile': | ||
WORD_NAME = ['20B_tokenizer.json', '20B_tokenizer.json'] | ||
MODEL_NAME = '/fsx/BlinkDL/HF-MODEL/rwkv-4-pile-3b/RWKV-4-Pile-3B-20221003-6783' | ||
n_layer = 32 | ||
n_embd = 2560 | ||
ctx_len = 1024 | ||
UNKNOWN_CHAR = None | ||
|
||
from src.utils import TOKENIZER | ||
tokenizer = TOKENIZER(WORD_NAME, UNKNOWN_CHAR=UNKNOWN_CHAR) | ||
if TOKEN_MODE == 'pile': | ||
tokenizer.vocab_size = 50277 | ||
|
||
######################################################################################################## | ||
|
||
os.environ["RWKV_JIT_ON"] = "1" | ||
os.environ["RWKV_T_MAX"] = str(ctx_len) | ||
|
||
from src.model_run import RWKV_RNN | ||
from src.model import RWKV | ||
|
||
args = types.SimpleNamespace() | ||
args.vocab_size = tokenizer.vocab_size | ||
args.ctx_len = ctx_len | ||
args.n_embd = n_embd | ||
args.n_layer = n_layer | ||
args.head_qk = 0 | ||
args.pre_ffn = 0 | ||
args.grad_cp = 0 | ||
args.my_pos_emb = 0 | ||
model_train = RWKV(args).to(RUN_DEVICE) | ||
|
||
if os.environ['RWKV_FLOAT_MODE'] == 'fp16': | ||
model_train = model_train.half() | ||
elif os.environ['RWKV_FLOAT_MODE'] == 'bf16': | ||
model_train = model_train.bfloat16() | ||
|
||
print('loading ' + MODEL_NAME) | ||
m2 = torch.load(MODEL_NAME + '.pth', map_location='cpu') | ||
model_train.load_state_dict(m2) | ||
|
||
if os.environ['RWKV_FLOAT_MODE'] == 'fp16': | ||
model_train = model_train.half() | ||
elif os.environ['RWKV_FLOAT_MODE'] == 'bf16': | ||
model_train = model_train.bfloat16() | ||
|
||
args.MODEL_NAME = MODEL_NAME | ||
args.RUN_DEVICE = RUN_DEVICE | ||
args.FLOAT_MODE = os.environ['RWKV_FLOAT_MODE'] | ||
model_rnn = RWKV_RNN(args) | ||
|
||
######################################################################################################## | ||
|
||
print(f"\nVerifying {os.environ['RWKV_RUN_DEVICE']} {os.environ['RWKV_FLOAT_MODE']}") | ||
|
||
# context = '\nIn a' | ||
context = '\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese.' | ||
|
||
if TOKEN_MODE == 'pile': | ||
ctx = tokenizer.tokenizer.encode(context) | ||
print(f'input len {len(ctx)} data {ctx}') | ||
|
||
######################################################################################################## | ||
|
||
with torch.no_grad(): | ||
print('\nRWKV-train output') | ||
out = model_train.forward(torch.tensor([ctx]).to(RUN_DEVICE))[0].detach().cpu().float().numpy() | ||
print(out, '\n') | ||
|
||
print('\nRWKV-RNN output') | ||
state = None | ||
out = None | ||
src_len = len(ctx) | ||
for i in range(src_len): | ||
x = ctx[:i+1] | ||
out, state = model_rnn.forward(x, state) | ||
if i < 3 or i >= src_len - 3: | ||
print(out.detach().cpu().numpy()) | ||
if i == 2: | ||
print('...') |