Skip to content

Recurrent Neural Network and Long Short Term Memory (LSTM) with Connectionist Temporal Classification implemented in Theano. Includes a Toy training example.

License

Notifications You must be signed in to change notification settings

tonsquemike/rnn_ctc

 
 

Repository files navigation

rnn_ctc

Recurrent Neural Network with Connectionist Temporal Classifical implemented in Theano. Includes a Toy training example.

Usage

Generate Data

First generate some data using one of the scribes (a, b or c)

# Run with '-h' to see full functionality of gen_data.py
python3 gen_data.py -h

a) Hindu numerals

python3 gen_data.py data.pkl -a hindu

b) ASCII characters.

python3 gen_data.py data.pkl -a ascii

c) scribe_rows scribes i-th digit along the i-th row as an i+2 long bar

python3 alphabets/scribe_rows.py data.pkl
# Run with no arguments to see full usage

Now you have the data.pkl file.

Train Network

Run the actual Recurrent Neural Net with Connectionist Temporal Classification cost function as:

python3 train.py data.pkl [configuration_num]
# Run with no arguments for full usage.

Sample Output

# Using data from scribe_rows.py
Shown : 0 2 3 1 0 1 0 2 1 2   
Seen  : 0 2 3 1 0 1 0 2 1 2   
Images (Shown & Seen) : 

 0¦    ██  ██ ██             ¦  
 1¦     ███  ███  ███        ¦  
 2¦    ████    ████  ████    ¦  
 3¦    █████                 ¦  

 0¦    █    ██ █▓            ¦  
 1¦       ██  █    ███       ¦  
 2¦     █       ▒██   ██▓    ¦  
 3¦      █                   ¦  
 4¦████                 ▒████¦  

# Using data from scribe.py hindu
Shown : 0 2 2 5 
Seen  : 0 2 2 5 
Images (Shown & Seen) : 

 0¦                            ¦
 1¦          ██  ██            ¦
 2¦         █  ██  ████        ¦
 3¦           █   █ █          ¦
 4¦      ██  █   █  ███        ¦
 5¦     █  █████████  █        ¦
 6¦     █  █        █ █        ¦
 7¦      ██         ███        ¦
 
 0¦░░░░░░░░░█░░░░░░░░░░░░░░░░░░¦
 1¦░░░░░░░░░░░░░░░░░░░░░░░░░░░░¦
 2¦░░░░░░░░░░░░░█░░░█░░░░░░░░░░¦
 3¦░░░░░░░░░░░░░░░░░░░░░░░░░░░░¦
 4¦░░░░░░░░░░░░░░░░░░░░░░░░░░░░¦
 5¦░░░░░░░░░░░░░░░░░░░█▓░░░░░░░¦
 6¦█████████░███░███░█░▒███████¦

References

  • Graves, Alex. Supervised Sequence Labelling with Recurrent Neural Networks. Chapters 2, 3, 7 and 9.
  • Available at Springer
  • University Edition via. Springer Link.
  • Free Preprint

Credits

Dependencies

  • Numpy
  • Theano

Can easily port to python2 by adding lines like these where necessary:

from __future__ import print_function

About

Recurrent Neural Network and Long Short Term Memory (LSTM) with Connectionist Temporal Classification implemented in Theano. Includes a Toy training example.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%