Skip to content

An open source python library for automated prediction engineering

License

Notifications You must be signed in to change notification settings

trane-dev/Trane

Folders and files

NameName
Last commit message
Last commit date

Latest commit

8d13050 · Jul 27, 2023
Jul 27, 2023
Jul 27, 2023
Jul 27, 2023
Jul 27, 2023
Jul 24, 2023
Jul 24, 2023
Dec 31, 2022
Jul 4, 2023
Jul 8, 2023
Jan 2, 2023
Jul 13, 2023
Feb 24, 2023

Repository files navigation

“Trane_Logo”

Tests PyPI Version PyPI Downloads


Automatically formulating machine learning tasks for temporal datasets

Trane is a software package for automatically generating prediction problems and generating labels for supervised learning. Trane is a system designed to advance the automation of the machine learning problem solving pipeline.

Trane About Video

Install

To install Trane, run the following command:

python -m pip install trane

Example

Below is an example of using Trane:

import trane

data = trane.datasets.load_covid()
table_meta = trane.datasets.load_covid_metadata()

entity_col = "Country/Region"
window_size = "2d"
minimum_data = "2020-01-22"
maximum_data = "2020-03-29"
cutoff_strategy = trane.CutoffStrategy(
    entity_col=entity_col,
    window_size=window_size,
    minimum_data=minimum_data,
    maximum_data=maximum_data,
)
time_col = "Date"
problem_generator = trane.PredictionProblemGenerator(
    df=data,
    entity_col=entity_col,
    time_col=time_col,
    cutoff_strategy=cutoff_strategy,
    table_meta=table_meta,
)
problems = problem_generator.generate(data, generate_thresholds=True)

Citing Trane

If you use Trane, please consider citing the following paper:

Ben Schreck, Kalyan Veeramachaneni. What Would a Data Scientist Ask? Automatically Formulating and Solving Predictive Problems. IEEE DSAA 2016, 440-451

BibTeX entry:

@inproceedings{schreck2016would,
  title={What Would a Data Scientist Ask? Automatically Formulating and Solving Predictive Problems},
  author={Schreck, Benjamin and Veeramachaneni, Kalyan},
  booktitle={Data Science and Advanced Analytics (DSAA), 2016 IEEE International Conference on},
  pages={440--451},
  year={2016},
  organization={IEEE}
}