Skip to content

Commit

Permalink
Implementation of a regression tree in python
Browse files Browse the repository at this point in the history
I've implemented a basic decision tree in python as an example of how they work. Although the class I've created only works on one dimensional data sets, the reader should be able to generalize it to higher dimensions should they need to.
  • Loading branch information
nbrgr committed Oct 9, 2017
1 parent 3ecb193 commit 8fb1eb7
Showing 1 changed file with 136 additions and 0 deletions.
136 changes: 136 additions & 0 deletions machine_learning/decision_tree.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
"""
Implementation of a basic regression decision tree.
Input data set: The input data set must be 1-dimensional with continuous labels.
Output: The decision tree maps a real number input to a real number output.
"""

import numpy as np

class Decision_Tree:
def __init__(self, depth = 5, min_leaf_size = 5):
self.depth = depth
self.decision_boundary = 0
self.left = None
self.right = None
self.min_leaf_size = min_leaf_size
self.prediction = None

def mean_squared_error(self, labels, prediction):
"""
mean_squared_error:
@param labels: a one dimensional numpy array
@param prediction: a floating point value
return value: mean_squared_error calculates the error if prediction is used to estimate the labels
"""
if labels.ndim != 1:
print("Error: Input labels must be one dimensional")

return np.mean((labels - prediction) ** 2)

def train(self, X, y):
"""
train:
@param X: a one dimensional numpy array
@param y: a one dimensional numpy array.
The contents of y are the labels for the corresponding X values
train does not have a return value
"""

"""
this section is to check that the inputs conform to our dimensionality constraints
"""
if X.ndim != 1:
print("Error: Input data set must be one dimensional")
return
if len(X) != len(y):
print("Error: X and y have different lengths")
return
if y.ndim != 1:
print("Error: Data set labels must be one dimensional")

if len(X) < 2 * self.min_leaf_size:
self.prediction = np.mean(y)

if self.depth == 1:
self.prediction = np.mean(y)

best_split = 0
min_error = self.mean_squared_error(X,np.mean(y)) * 2


"""
loop over all possible splits for the decision tree. find the best split.
if no split exists that is less than 2 * error for the entire array
then the data set is not split and the average for the entire array is used as the predictor
"""
for i in range(len(X)):
if len(X[:i]) < self.min_leaf_size:
continue
elif len(X[i:]) < self.min_leaf_size:
continue
else:
error_left = self.mean_squared_error(X[:i], np.mean(y[:i]))
error_right = self.mean_squared_error(X[i:], np.mean(y[i:]))
error = error_left + error_right
if error < min_error:
best_split = i
min_error = error

if best_split != 0:
left_X = X[:best_split]
left_y = y[:best_split]
right_X = X[best_split:]
right_y = y[best_split:]

self.decision_boundary = X[best_split]
self.left = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size)
self.right = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size)
self.left.train(left_X, left_y)
self.right.train(right_X, right_y)
else:
self.prediction = np.mean(y)

return

def predict(self, x):
"""
predict:
@param x: a floating point value to predict the label of
the prediction function works by recursively calling the predict function
of the appropriate subtrees based on the tree's decision boundary
"""
if self.prediction is not None:
return self.prediction
elif self.left or self.right is not None:
if x >= self.decision_boundary:
return self.right.predict(x)
else:
return self.left.predict(x)
else:
print("Error: Decision tree not yet trained")
return None

def main():
"""
In this demonstration we're generating a sample data set from the sin function in numpy.
We then train a decision tree on the data set and use the decision tree to predict the
label of 10 different test values. Then the mean squared error over this test is displayed.
"""
X = np.arange(-1., 1., 0.005)
y = np.sin(X)

tree = Decision_Tree(depth = 10, min_leaf_size = 10)
tree.train(X,y)

test_cases = (np.random.rand(10) * 2) - 1
predictions = np.array([tree.predict(x) for x in test_cases])
avg_error = np.mean((predictions - test_cases) ** 2)

print("Test values: " + str(test_cases))
print("Predictions: " + str(predictions))
print("Average error: " + str(avg_error))


if __name__ == '__main__':
main()

0 comments on commit 8fb1eb7

Please sign in to comment.