Skip to content

Commit

Permalink
update robustMT to tg
Browse files Browse the repository at this point in the history
  • Loading branch information
miaecle committed Feb 10, 2018
1 parent 7b23deb commit 9065ffb
Show file tree
Hide file tree
Showing 10 changed files with 384 additions and 337 deletions.
577 changes: 307 additions & 270 deletions deepchem/models/tensorflow_models/robust_multitask.py

Large diffs are not rendered by default.

2 changes: 0 additions & 2 deletions deepchem/models/tests/test_overfit.py
Original file line number Diff line number Diff line change
Expand Up @@ -598,7 +598,6 @@ def test_tf_robust_multitask_classification_overfit(self):

# Fit trained model
model.fit(dataset, nb_epoch=25)
model.save()

# Eval model on train
scores = model.evaluate(dataset, [classification_metric])
Expand Down Expand Up @@ -766,7 +765,6 @@ def test_tf_robust_multitask_regression_overfit(self):

# Fit trained model
model.fit(dataset, nb_epoch=25)
model.save()

# Eval model on train
scores = model.evaluate(dataset, [regression_metric])
Expand Down
2 changes: 1 addition & 1 deletion deepchem/molnet/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,4 +33,4 @@
from deepchem.molnet.dnasim import simulate_single_motif_detection

from deepchem.molnet.run_benchmark import run_benchmark
from deepchem.molnet.run_benchmark_low_data import run_benchmark_low_data
#from deepchem.molnet.run_benchmark_low_data import run_benchmark_low_data
28 changes: 15 additions & 13 deletions deepchem/molnet/run_benchmark_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,18 +95,18 @@ def benchmark_classification(train_dataset,
learning_rate = hyper_parameters['learning_rate']

# Building tensorflow MultiTaskDNN model
model = deepchem.models.TensorflowMultiTaskClassifier(
model = deepchem.models.MultiTaskClassifier(
len(tasks),
n_features,
layer_sizes=layer_sizes,
weight_init_stddevs=weight_init_stddevs,
bias_init_consts=bias_init_consts,
dropouts=dropouts,
penalty=penalty,
penalty_type=penalty_type,
weight_decay_penalty=penalty,
weight_decay_penalty_type=penalty_type,
batch_size=batch_size,
learning_rate=learning_rate,
seed=seed)
random_seed=seed)

elif model_name == 'tf_robust':
layer_sizes = hyper_parameters['layer_sizes']
Expand Down Expand Up @@ -137,11 +137,11 @@ def benchmark_classification(train_dataset,
bypass_weight_init_stddevs=bypass_weight_init_stddevs,
bypass_bias_init_consts=bypass_bias_init_consts,
bypass_dropouts=bypass_dropouts,
penalty=penalty,
penalty_type=penalty_type,
weight_decay_penalty=penalty,
weight_decay_penalty_type=penalty_type,
batch_size=batch_size,
learning_rate=learning_rate,
seed=seed)
random_seed=seed)

elif model_name == 'logreg':
penalty = hyper_parameters['penalty']
Expand Down Expand Up @@ -461,15 +461,15 @@ def benchmark_regression(train_dataset,
nb_epoch = hyper_parameters['nb_epoch']
learning_rate = hyper_parameters['learning_rate']

model = deepchem.models.TensorflowMultiTaskRegressor(
model = deepchem.models.MultiTaskRegressor(
len(tasks),
n_features,
layer_sizes=layer_sizes,
weight_init_stddevs=weight_init_stddevs,
bias_init_consts=bias_init_consts,
dropouts=dropouts,
penalty=penalty,
penalty_type=penalty_type,
weight_decay_penalty=penalty,
weight_decay_penalty_type=penalty_type,
batch_size=batch_size,
learning_rate=learning_rate,
seed=seed)
Expand All @@ -486,15 +486,15 @@ def benchmark_regression(train_dataset,
learning_rate = hyper_parameters['learning_rate']
fit_transformers = [hyper_parameters['fit_transformers'](train_dataset)]

model = deepchem.models.TensorflowMultiTaskFitTransformRegressor(
model = deepchem.models.MultiTaskFitTransformRegressor(
n_tasks=len(tasks),
n_features=n_features,
layer_sizes=layer_sizes,
weight_init_stddevs=weight_init_stddevs,
bias_init_consts=bias_init_consts,
dropouts=dropouts,
penalty=penalty,
penalty_type=penalty_type,
weight_decay_penalty=penalty,
weight_decay_penalty_type=penalty_type,
batch_size=batch_size,
learning_rate=learning_rate,
fit_transformers=fit_transformers,
Expand Down Expand Up @@ -774,6 +774,7 @@ def model_builder(model_dir_xgb):
return train_scores, valid_scores, test_scores


'''
def low_data_benchmark_classification(train_dataset,
valid_dataset,
n_features,
Expand Down Expand Up @@ -883,3 +884,4 @@ def low_data_benchmark_classification(train_dataset,
valid_dataset, metric, n_pos, n_neg, n_trials=n_eval_trials)
return valid_scores
'''
31 changes: 18 additions & 13 deletions examples/factors/FACTORS_tf_robust.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,14 +37,20 @@
all_results = []
for trial in range(num_trials):
model = dc.models.RobustMultitaskRegressor(
len(FACTORS_tasks), train_dataset.get_data_shape()[0],
layer_sizes=[1000]*n_layers, bypass_layer_sizes=[100]*n_bypass_layers,
dropouts=[.25]*n_layers, bypass_dropouts=[.25]*n_bypass_layers,
weight_init_stddevs=[.02]*n_layers, bias_init_consts=[1.]*n_layers,
bypass_weight_init_stddevs=[.02]*n_bypass_layers,
bypass_bias_init_consts=[1.]*n_bypass_layers,
learning_rate=.0003, penalty=.0001, penalty_type="l2",
optimizer="adam", batch_size=100, logdir="FACTORS_tf_bypass")
len(FACTORS_tasks),
train_dataset.get_data_shape()[0],
layer_sizes=[1000] * n_layers,
bypass_layer_sizes=[100] * n_bypass_layers,
dropouts=[.25] * n_layers,
bypass_dropouts=[.25] * n_bypass_layers,
weight_init_stddevs=[.02] * n_layers,
bias_init_consts=[1.] * n_layers,
bypass_weight_init_stddevs=[.02] * n_bypass_layers,
bypass_bias_init_consts=[1.] * n_bypass_layers,
learning_rate=.0003,
weight_decay_penalty=.0001,
weight_decay_penalty_type="l2",
batch_size=100)

print("Fitting Model")
model.fit(train_dataset, nb_epoch=nb_epoch)
Expand All @@ -57,9 +63,8 @@
test_score, test_task_scores = model.evaluate(
test_dataset, [metric], transformers, per_task_metrics=True)

all_results.append((train_score, train_task_scores,
valid_score, valid_task_scores,
test_score, test_task_scores))
all_results.append((train_score, train_task_scores, valid_score,
valid_task_scores, test_score, test_task_scores))

print("Scores for trial %d" % trial)
print("----------------------------------------------------------------")
Expand All @@ -79,8 +84,8 @@
print("####################################################################")

for trial in range(num_trials):
(train_score, train_task_scores, valid_score, valid_task_scores,
test_score, test_task_scores) = all_results[trial]
(train_score, train_task_scores, valid_score, valid_task_scores, test_score,
test_task_scores) = all_results[trial]

print("Scores for trial %d" % trial)
print("----------------------------------------------------------------")
Expand Down
5 changes: 2 additions & 3 deletions examples/hopv/hopv_robustMT_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,9 +39,8 @@
bypass_weight_init_stddevs=[.02] * n_bypass_layers,
bypass_bias_init_consts=[.5] * n_bypass_layers,
learning_rate=.0003,
penalty=.0001,
penalty_type="l2",
optimizer="adam",
weight_decay_penalty=.0001,
weight_decay_penalty_type="l2",
batch_size=100)

# Fit trained model
Expand Down
8 changes: 3 additions & 5 deletions examples/kaggle/KAGGLE_tf_robust.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,11 +48,9 @@
bypass_weight_init_stddevs=[.02] * n_bypass_layers,
bypass_bias_init_consts=[1.] * n_bypass_layers,
learning_rate=.00003,
penalty=.0004,
penalty_type="l2",
optimizer="adam",
batch_size=100,
logdir="KAGGLE_tf_bypass")
weight_decay_penalty=.0004,
weight_decay_penalty_type="l2",
batch_size=100)

print("Fitting Model")
model.fit(train_dataset, nb_epoch=nb_epoch)
Expand Down
31 changes: 18 additions & 13 deletions examples/kinase/KINASE_tf_robust.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,14 +40,20 @@
all_results = []
for trial in range(num_trials):
model = dc.models.RobustMultitaskRegressor(
len(KINASE_tasks), train_dataset.get_data_shape()[0],
layer_sizes=[500]*n_layers, bypass_layer_sizes=[50]*n_bypass_layers,
dropouts=[.25]*n_layers, bypass_dropouts=[.25]*n_bypass_layers,
weight_init_stddevs=[.02]*n_layers, bias_init_consts=[.5]*n_layers,
bypass_weight_init_stddevs=[.02]*n_bypass_layers,
bypass_bias_init_consts=[.5]*n_bypass_layers,
learning_rate=.0003, penalty=.0001, penalty_type="l2",
optimizer="adam", batch_size=100)
len(KINASE_tasks),
train_dataset.get_data_shape()[0],
layer_sizes=[500] * n_layers,
bypass_layer_sizes=[50] * n_bypass_layers,
dropouts=[.25] * n_layers,
bypass_dropouts=[.25] * n_bypass_layers,
weight_init_stddevs=[.02] * n_layers,
bias_init_consts=[.5] * n_layers,
bypass_weight_init_stddevs=[.02] * n_bypass_layers,
bypass_bias_init_consts=[.5] * n_bypass_layers,
learning_rate=.0003,
weight_decay_penalty=.0001,
weight_decay_penalty_type="l2",
batch_size=100)

print("Fitting Model")
model.fit(train_dataset, nb_epoch=nb_epoch)
Expand All @@ -60,9 +66,8 @@
test_score, test_task_scores = model.evaluate(
test_dataset, [metric], transformers, per_task_metrics=True)

all_results.append((train_score, train_task_scores,
valid_score, valid_task_scores,
test_score, test_task_scores))
all_results.append((train_score, train_task_scores, valid_score,
valid_task_scores, test_score, test_task_scores))

print("Scores for trial %d" % trial)
print("----------------------------------------------------------------")
Expand All @@ -82,8 +87,8 @@
print("####################################################################")

for trial in range(num_trials):
(train_score, train_task_scores, valid_score, valid_task_scores,
test_score, test_task_scores) = all_results[trial]
(train_score, train_task_scores, valid_score, valid_task_scores, test_score,
test_task_scores) = all_results[trial]

print("Scores for trial %d" % trial)
print("----------------------------------------------------------------")
Expand Down
6 changes: 2 additions & 4 deletions examples/tox21/tox21_robustMT_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,14 +36,12 @@
bypass_weight_init_stddevs=[.02] * n_bypass_layers,
bypass_bias_init_consts=[.5] * n_bypass_layers,
learning_rate=.0003,
penalty=.0001,
penalty_type="l2",
optimizer="adam",
weight_decay_penalty=.0001,
weight_decay_penalty_type="l2",
batch_size=100)

# Fit trained model
model.fit(train_dataset, nb_epoch=nb_epoch)
model.save()

print("Evaluating model")
train_scores = model.evaluate(train_dataset, [metric], transformers)
Expand Down
31 changes: 18 additions & 13 deletions examples/uv/UV_tf_robust.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,14 +37,20 @@
all_results = []
for trial in range(num_trials):
model = dc.models.RobustMultitaskRegressor(
len(UV_tasks), train_dataset.get_data_shape()[0],
layer_sizes=[500]*n_layers, bypass_layer_sizes=[40]*n_bypass_layers,
dropouts=[.25]*n_layers, bypass_dropouts=[.25]*n_bypass_layers,
weight_init_stddevs=[.02]*n_layers, bias_init_consts=[.5]*n_layers,
bypass_weight_init_stddevs=[.02]*n_bypass_layers,
bypass_bias_init_consts=[.5]*n_bypass_layers,
learning_rate=.0003, penalty=.0001, penalty_type="l2",
optimizer="adam", batch_size=100, logdir="UV_tf_robust")
len(UV_tasks),
train_dataset.get_data_shape()[0],
layer_sizes=[500] * n_layers,
bypass_layer_sizes=[40] * n_bypass_layers,
dropouts=[.25] * n_layers,
bypass_dropouts=[.25] * n_bypass_layers,
weight_init_stddevs=[.02] * n_layers,
bias_init_consts=[.5] * n_layers,
bypass_weight_init_stddevs=[.02] * n_bypass_layers,
bypass_bias_init_consts=[.5] * n_bypass_layers,
learning_rate=.0003,
weight_decay_penalty=.0001,
weight_decay_penalty_type="l2",
batch_size=100)

print("Fitting Model")
model.fit(train_dataset, nb_epoch=nb_epoch)
Expand All @@ -57,9 +63,8 @@
test_score, test_task_scores = model.evaluate(
test_dataset, [metric], transformers, per_task_metrics=True)

all_results.append((train_score, train_task_scores,
valid_score, valid_task_scores,
test_score, test_task_scores))
all_results.append((train_score, train_task_scores, valid_score,
valid_task_scores, test_score, test_task_scores))

print("Scores for trial %d" % trial)
print("----------------------------------------------------------------")
Expand All @@ -79,8 +84,8 @@
print("####################################################################")

for trial in range(num_trials):
(train_score, train_task_scores, valid_score, valid_task_scores,
test_score, test_task_scores) = all_results[trial]
(train_score, train_task_scores, valid_score, valid_task_scores, test_score,
test_task_scores) = all_results[trial]

print("Scores for trial %d" % trial)
print("----------------------------------------------------------------")
Expand Down

0 comments on commit 9065ffb

Please sign in to comment.