Skip to content

ulavarby/engine_balance

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Calculation of the dynamic balance of reciprocating and rotating masses of internal combustion engines

License: GPL v3

Motivation

engine_balance.py is designed to calculate the dynamic balance of reciprocating and rotating masses of internal combustion engines.

This tool is a Python revision of a program created in 1978 for a graduation project at the Belarusian National Technical University. The original program was written in "ap" ("ап") language for computer "NAIRI-2".

Theory

Proections of Primary Reciprocating Forses:

$$ \sum P_{rcp1}(x)=m_{rcp}R\omega^2\left(\sum_{i=1}^{n_{left}}cos(\alpha+\delta_i)+cos\gamma\sum_{i=1}^{n_{right}}cos(\alpha+\delta_i-\gamma)\right) $$

$$ \sum P_{rcp1}(y)=m_{rcp}R\omega^2\sin\gamma\sum_{i=1}^{n_{right}}cos(\alpha+\delta_i-\gamma) $$

Resulting Primary Reciprocating Forse:

$$ \sum P_{rcp1}=\sqrt{\left(\sum P_{rcp1}(x)\right)^2+\left(\sum P_{rcp1}(y)\right)^2} $$

Proections of Secondary Reciprocating Forses:

$$ \sum P_{rcp2}(x)=m_{rcp}R\omega^2\lambda\left(\sum_{i=1}^{n_{left}}cos2(\alpha+\delta_i)+cos\gamma\sum_{i=1}^{n_{right}}cos2(\alpha+\delta_i-\gamma) \right) $$

$$ \sum P_{rcp2}(y)=m_{rcp}R\omega^2\lambda\sin\gamma\sum_{i=1}^{n_{right}}cos2(\alpha+\delta_i-\gamma) $$

Resulting Secondary Reciprocating Forse:

$$ \sum P_{rcp2}=\sqrt{\left(\sum P_{rcp2}(x)\right)^2+\left(\sum P_{rcp2}(y)\right)^2} $$

Proections of Centrifugal Forses:

$$ \sum K_{rot}(x)=m_{rot}R\omega^2\sum_{i=1}^{n_{cr}}cos(\alpha+\delta_i) $$

$$ \sum K_{rot}(y)=m_{rot}R\omega^2\sum_{i=1}^{n_{cr}}sin(\alpha+\delta_i) $$

Resulting Centrifugal Forse:

$$ \sum K_{rot}=\sqrt{\left(\sum K_{rot}(x)\right)^2+\left(\sum K_{rot}(y)\right)^2} $$

Proections of Primary Reciprocating Moments:

$$ \sum M_{rcp1}(x)=-m_{rcp}R\omega^2\sin\gamma\sum_{i=1}^{n_{right}}h_{iright}cos(\alpha+\delta_i-\gamma) $$

$$ \sum M_{rcp1}(y)=m_{rcp}R\omega^2\left(\sum_{i=1}^{n_{left}}h_{ileft}cos(\alpha+\delta_i)+cos\gamma\sum_{i=1}^{n_{right}}h_{iright}cos(\alpha+\delta_i-\gamma)\right) $$

Resulting Primary Reciprocating Moment:

$$ \sum M_{rcp1}=\sqrt{\left(\sum M_{rcp1}(x)\right)^2+\left(\sum M_{rcp1}(y)\right)^2} $$

Proections of Secondary Reciprocating Moments:

$$ \sum M_{rcp2}(x)=-m_{rcp}R\omega^2\lambda\sin\gamma\sum_{i=1}^{n_{right}}h_{iright}cos2(\alpha+\delta_i-\gamma) $$

$$ \sum M_{rcp2}(y)=m_{rcp}R\omega^2\lambda\left(\sum_{i=1}^{n_{left}}h_{ileft}cos2(\alpha+\delta_i)+cos\gamma\sum_{i=1}^{n_{right}}h_{iright}cos2(\alpha+\delta_i-\gamma)\right) $$

Resulting Secondary Reciprocating Moment:

$$ \sum M_{rcp2}=\sqrt{\left(\sum M_{rcp2}(x)\right)^2+\left(\sum M_{rcp2}(y)\right)^2} $$

Proections of Centrifugal Moments:

$$ \sum M_{rot}(x)=-m_{rot}R\omega^2\sum_{i=1}^{n_{cr}}h_{i}sin(\alpha+\delta_i) $$

$$ \sum M_{rot}(y)=m_{rot}R\omega^2\sum_{i=1}^{n_{cr}}h_{i}cos(\alpha+\delta_i) $$

Resulting Centrifugal Moment:

$$ \sum M_{rot}=\sqrt{\left(\sum M_{rot}(x)\right)^2+\left(\sum M_{rot}(y)\right)^2} $$


Fig. 1

Fig. 1

Fig. 2

Fig. 2

Abbreviations

The following abbreviations are used:

$m_{rcp}$ — mass of reciprocating parts, kg

$m_{rot}$ — mass of rotating parts, kg

$L$ — connecting rod length, m

$R$ — crank radius, m

$\lambda=L/R$ — elongation ratio, equal to the ratio of the connection rod length L to the crank radius R

$\omega$ — angular velocity, crankshaft rotational speed ($\omega=\frac{2\pi N}{60}$), $s^{-1}$

$\alpha$ — the crank-angle with respect to the x-axis, grad

$\delta_{i}$ — angle between first crankpin and subsequent ones on the crankshaft, grad

$\gamma$ — angle between the two banks of cylinders (V - angle), grad

$h_{i}$ — the pitch distances between the first connecting rod and subsequent ones on the crankshaft journals, m


References

  1. Železko B.E. Osnovy teorii i dinamika avtomobilnych i traktornych dvigatelej. Minsk : Vysšaja škola, 1980 / Железко Б.Е. Основы теории и динамика автомобильных и тракторных двигателей. Мн. : Выш. школа, 1980.

  2. Alberto Dagna , Cristiana Delprete, Chiara Gastaldi. A General Framework for Crankshaft Balancing and Counterweight Design. Department of Mechanical and Aerospace Engineering, Politecnico di Torino. Appl. Sci. 2021, 11(19), 8997; https://doi.org/10.3390/app11198997.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages