Skip to content

Python library to compute knowledge graph embeddings

License

Notifications You must be signed in to change notification settings

unmeshvrije/scikit-kge

 
 

Repository files navigation

How to run

python skge/run_transe.py --fin data/wn18.bin --test-all 50 --nb 100 --me 500 --margin 2.0 --lr 0.1 --ncomp 50 --fgrad numbers.txt

# Knowledge Graph Embeddings

scikit-kge is a Python library to compute embeddings of knowledge graphs. The
library consists of different building blocks to train and develop models for
knowledge graph embeddings.

To compute a knowledge graph embedding, first instantiate a model and then train it
with desired training method. For instance, to train [holographic embeddings of knowledge graphs](http://arxiv.org/abs/1510.04935) (HolE) with a logistcc loss function:

```python
from skge import HolE, StochasticTrainer

# Load knowledge graph 
# N = number of entities
# M = number of relations
# xs = list of (subject, object, predicte) triples
# ys = list of truth values for triples (1 = true, -1 = false)
N, M, xs, ys = load_data('path to data')

# instantiate HolE with an embedding space of size 100
model = HolE((N, N, M), 100)

# instantiate trainer
trainer = StochasticTrainer(model)

# fit model to knowledge graph
trainer.fit(xs, ys)

See the repository for the experiments in the HolE paper for an extensive example how to use this library.

The different available buildings blocks are described in more detail in the following:

Experiments

  • Run transE with maximum epochs 100 and evaluate after 10 iterations.
  • Increase margin parameter for experiment (i.e. when splitting training set into two).
  • Add a command line parameter for marking bad embeddings after each evaluation on a TEST dataset.

Model

Instantiating a model, e.g. HolE

model = HolE(
    self.shape,
    self.args.ncomp,
    init=self.args.init,
    rparam=self.args.rparam
)

Trainer

scikit-kge supports two basic ways to train models:

StochasticTrainer (skge.base.StochasticTrainer)

Trains a model with logistic loss function

trainer = StochasticTrainer(
    model,
    nbatches=100,
    max_epochs=500,
    post_epoch=[self.callback],
    learning_rate=0.1
)
self.trainer.fit(xs, ys)
PairwiseStochasticTrainer (skge.base)

To train a model with pairwise ranking loss

trainer = PairwiseStochasticTrainer(
    model,
    nbatches=100,
    max_epochs=500,
    post_epoch=[self.callback],
    learning_rate=0.1,
    margin=0.2,
    af=af.Sigmoid
)
self.trainer.fit(xs, ys)

Parameter Update

scitkit-kge supports different methods to update the parameters of a model via the param_update keyword of StochasticTrainer and PairwiseStochasticTrainer.

For instance,

from skge.param import AdaGrad

trainer = StochasticTrainer(
    ...,
    param_update=AdaGrad,
    ...
)

uses AdaGrad to update the parameter.

Available parameter update methods are

SGD (skge.param.SGD)

Basic stochastic gradient descent. Only parameter is the learning rate.

AdaGrad (skge.param.AdaGrad)

AdaGrad method of Duchi et al., 2011. Automatically adapts learning rate based on gradient history. Only parameter is the initial learning rate.

Sampling

sckit-kge implements different strategies to sample negative examples.

Using Subgraphs embeddings

Following are the snippets of the shell scripts that create model embeddings, create subgraph embeddings and test them.

First, create/assign various parameters.

model = "HolE"
DB = "lubm1" # Name of the dataset
EPOCH = 50 # Number of epochs
SUBTYPE = "avg" # How should the subgraphs be prepared avg or var
MS = 10 # Minimum Subgraph Size
SUBALGO = "hole"

Create file names for embeddings, models and subgraphs.

model_embeddings_file="/path/to/model/embeddings"
subgraph_embeddings_home="/path/to/result/directory/"
subfile_name=$subgraph_embeddings_home"$DB-$model-epochs-$EPOCH-$SUBTYPE-tau-$MS"".sub"
model_file_name=$subgraph_embeddings_home"$DB-$model-epochs-$EPOCH-$SUBTYPE-tau-$MS"".mod"

We use trident to load the datasets.

Create model embeddings (here HolE)

python run_hole.py --fin /path/to/trident/db/of/dataset  --test-all 100 --nb 1000 --me $EPOCH --margin 0.2 --lr 0.1 --ncomp 50 --fout $model_embeddings_file

Generate subgraphs for $DB with mincard $MS and algo $SUBALGO (Note the --subcreate parameter)

python run_hole.py --fin /path/to/trident/db/of/dataset  --nb 1000 --me $EPOCH --margin 0.2 --lr 0.1 --ncomp 50 --subcreate --minsubsize $MS --subalgo $SUBALGO --subdistance $SUBTYPE --fout $model_embeddings_file

Test the accuracy with subgraphs (with the --subtest parameter).

TOPK = 10 # Number of top K subgraphs
python run_hole.py --fin /path/to/trident/db/of/dataset  --nb 1000 --me $EPOCH --margin 0.2 --lr 0.1 --ncomp 50 --subtest --minsubsize $MS --subalgo $SUBALGO --subdistance $SUBTYPE --fout $model_file_name  --fsub $subfile_name --topk $TOPK

About

Python library to compute knowledge graph embeddings

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.4%
  • Shell 1.6%