forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[distill]add distillation losses (PaddlePaddle#789)
- Loading branch information
1 parent
c9c0e83
commit dfe5d3f
Showing
4 changed files
with
1,110 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,207 @@ | ||
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | ||
# | ||
#Licensed under the Apache License, Version 2.0 (the "License"); | ||
#you may not use this file except in compliance with the License. | ||
#You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
#Unless required by applicable law or agreed to in writing, software | ||
#distributed under the License is distributed on an "AS IS" BASIS, | ||
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
#See the License for the specific language governing permissions and | ||
#limitations under the License. | ||
|
||
import paddle | ||
import paddle.nn as nn | ||
import paddle.nn.functional as F | ||
|
||
from paddle.nn import L1Loss | ||
from paddle.nn import MSELoss as L2Loss | ||
from paddle.nn import SmoothL1Loss | ||
|
||
__all__ = [ | ||
"CELoss", | ||
"DMLLoss", | ||
"DistanceLoss", | ||
"RKdAngle", | ||
"RkdDistance", | ||
] | ||
|
||
|
||
class CELoss(nn.Layer): | ||
""" | ||
CELoss: cross entropy loss | ||
Args: | ||
epsilon(float | None): label smooth epsilon. If it is None or not in range (0, 1), | ||
then label smooth will not be used. | ||
label_act(string | None): activation function, it works when the label is also the logits | ||
rather than the groundtruth label. | ||
axis(int): axis used to calculate cross entropy loss. | ||
""" | ||
|
||
def __init__(self, epsilon=None, label_act="softmax", axis=-1): | ||
super().__init__() | ||
if epsilon is not None and (epsilon <= 0 or epsilon >= 1): | ||
epsilon = None | ||
assert label_act in ["softmax", None] | ||
if epsilon is not None and (epsilon >= 1 or epsilon <= 0): | ||
epsilon = None | ||
self.epsilon = epsilon | ||
self.label_act = label_act | ||
self.axis = axis | ||
|
||
def _labelsmoothing(self, target, class_num): | ||
if target.shape[-1] != class_num: | ||
one_hot_target = F.one_hot(target, class_num) | ||
else: | ||
one_hot_target = target | ||
soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon) | ||
soft_target = paddle.reshape(soft_target, shape=[-1, class_num]) | ||
return soft_target | ||
|
||
def forward(self, x, label): | ||
assert len(x.shape) == len(label.shape), \ | ||
"x and label shape length should be same but got {} for x.shape and {} for label.shape".format(x.shape, label.shape) | ||
if self.epsilon is not None: | ||
class_num = x.shape[-1] | ||
label = self._labelsmoothing(label, class_num) | ||
x = -F.log_softmax(x, axis=self.axis) | ||
loss = paddle.sum(x * label, axis=self.axis) | ||
else: | ||
if label.shape[self.axis] == x.shape[self.axis]: | ||
if self.label_act == "softmax": | ||
label = F.softmax(label, axis=self.axis) | ||
soft_label = True | ||
else: | ||
soft_label = False | ||
loss = F.cross_entropy( | ||
x, label=label, soft_label=soft_label, axis=self.axis) | ||
loss = loss.mean() | ||
return loss | ||
|
||
|
||
class DMLLoss(nn.Layer): | ||
""" | ||
DMLLoss | ||
Args: | ||
act(string | None): activation function used to activate the input tensor | ||
axis(int): axis used to build activation function | ||
""" | ||
|
||
def __init__(self, act=None, axis=-1): | ||
super().__init__() | ||
if act is not None: | ||
assert act in ["softmax", "sigmoid"] | ||
if act == "softmax": | ||
self.act = nn.Softmax(axis=axis) | ||
elif act == "sigmoid": | ||
self.act = nn.Sigmoid() | ||
else: | ||
self.act = None | ||
|
||
def forward(self, out1, out2): | ||
if self.act is not None: | ||
out1 = self.act(out1) | ||
out2 = self.act(out2) | ||
|
||
log_out1 = paddle.log(out1) | ||
log_out2 = paddle.log(out2) | ||
loss = (F.kl_div( | ||
log_out1, out2, reduction='batchmean') + F.kl_div( | ||
log_out2, out1, reduction='batchmean')) / 2.0 | ||
return loss | ||
|
||
|
||
class DistanceLoss(nn.Layer): | ||
""" | ||
DistanceLoss | ||
Args: | ||
mode: loss mode | ||
kargs(dict): used to build corresponding loss function, for more details, please | ||
refer to: | ||
L1loss: https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/nn/L1Loss_cn.html#l1loss | ||
L2Loss: https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/nn/MSELoss_cn.html#mseloss | ||
SmoothL1Loss: https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/nn/SmoothL1Loss_cn.html#smoothl1loss | ||
""" | ||
|
||
def __init__(self, mode="l2", **kargs): | ||
super().__init__() | ||
assert mode in ["l1", "l2", "smooth_l1"] | ||
if mode == "l1": | ||
self.loss_func = nn.L1Loss(**kargs) | ||
elif mode == "l2": | ||
self.loss_func = nn.MSELoss(**kargs) | ||
elif mode == "smooth_l1": | ||
self.loss_func = nn.SmoothL1Loss(**kargs) | ||
|
||
def forward(self, x, y): | ||
return self.loss_func(x, y) | ||
|
||
|
||
def pdist(e, squared=False, eps=1e-12): | ||
e_square = e.pow(2).sum(axis=1) | ||
prod = paddle.mm(e, e.t()) | ||
res = (e_square.unsqueeze(1) + e_square.unsqueeze(0) - 2 * prod).clip( | ||
min=eps) | ||
|
||
if not squared: | ||
res = res.sqrt() | ||
|
||
return res | ||
|
||
|
||
class RKdAngle(nn.Layer): | ||
""" | ||
RKdAngle loss, see https://arxiv.org/abs/1904.05068 | ||
""" | ||
|
||
def __init__(self): | ||
super().__init__() | ||
|
||
def forward(self, student, teacher): | ||
# reshape for feature map distillation | ||
bs = student.shape[0] | ||
student = student.reshape([bs, -1]) | ||
teacher = teacher.reshape([bs, -1]) | ||
|
||
td = (teacher.unsqueeze(0) - teacher.unsqueeze(1)) | ||
norm_td = F.normalize(td, p=2, axis=2) | ||
t_angle = paddle.bmm(norm_td, norm_td.transpose([0, 2, 1])).reshape( | ||
[-1, 1]) | ||
|
||
sd = (student.unsqueeze(0) - student.unsqueeze(1)) | ||
norm_sd = F.normalize(sd, p=2, axis=2) | ||
s_angle = paddle.bmm(norm_sd, norm_sd.transpose([0, 2, 1])).reshape( | ||
[-1, 1]) | ||
loss = F.smooth_l1_loss(s_angle, t_angle, reduction='mean') | ||
return loss | ||
|
||
|
||
class RkdDistance(nn.Layer): | ||
""" | ||
RkdDistance loss, see https://arxiv.org/abs/1904.05068 | ||
Args: | ||
eps(float): epsilon for the pdist function | ||
""" | ||
|
||
def __init__(self, eps=1e-12): | ||
super().__init__() | ||
self.eps = eps | ||
|
||
def forward(self, student, teacher): | ||
bs = student.shape[0] | ||
student = student.reshape([bs, -1]) | ||
teacher = teacher.reshape([bs, -1]) | ||
|
||
t_d = pdist(teacher, squared=False, eps=self.eps) | ||
mean_td = t_d.mean() | ||
t_d = t_d / (mean_td + self.eps) | ||
|
||
d = pdist(student, squared=False, eps=self.eps) | ||
mean_d = d.mean() | ||
d = d / (mean_d + self.eps) | ||
|
||
loss = F.smooth_l1_loss(d, t_d, reduction="mean") | ||
return loss |
Oops, something went wrong.