Skip to content

Commit

Permalink
Initializing repository
Browse files Browse the repository at this point in the history
  • Loading branch information
vaibhavnaagar committed Oct 23, 2017
0 parents commit 633bf0f
Show file tree
Hide file tree
Showing 26 changed files with 1,948 additions and 0 deletions.
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
__pycache__
data
data/*
3 changes: 3 additions & 0 deletions Readme.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# Implementation of Unsupervised Pixel Level Domain Adaptation with GAN #
> CS698U (Visual Recognition)
173 changes: 173 additions & 0 deletions classifier.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn

import torchvision
import torchvision.transforms as transforms

import os
import argparse

from models import *
from utils import progress_bar
from torch.autograd import Variable
import pickle
import numpy as np
import sys

parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
args = parser.parse_args()

use_cuda = torch.cuda.is_available()
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch

# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])

transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# Model
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/ckpt.t7')
net = checkpoint['net']
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
else:
print('==> Building model..')
# net = VGG('VGG19')
# net = ResNet18()
net = PreActResNet18()
# net = GoogLeNet()
# net = DenseNet121()
# net = ResNeXt29_2x64d()
# net = MobileNet()
# net = DPN92()
# net = ShuffleNetG2()
# net = SENet18()

if use_cuda:
net.cuda()
# net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)

class NetFeatures(nn.Module):
def __init__(self, original_model):
super(NetFeatures, self).__init__()
# print(list(original_model.children())[:-1])
self.features = nn.Sequential(*list(original_model.children())[:-1])

def forward(self, x):
x = self.features(x)
## For PreActResnet only ##
x = F.avg_pool2d(x, 4)
x = x.view(x.size(0), -1)
return x

net_features = NetFeatures(net)

# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
optimizer.zero_grad()
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()

train_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()

progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))

def test(epoch, get_features=False):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
embeddings = []
for batch_idx, (inputs, targets) in enumerate(testloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = net(inputs)
if get_features:
embeddings.append(net_features(inputs).cpu().data.numpy())
# print(net_features(inputs).cpu().data.numpy().shape)

loss = criterion(outputs, targets)

test_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()

progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))

# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
print("Epoch:", epoch, "Accuracy:", acc)
state = {
'net': net, #.module if use_cuda else net,
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.t7')
best_acc = acc
if get_features:
embeddings = np.vstack(tuple(embeddings))
print("Embeddings:", embeddings.shape)
with open('cifar10_fc.pkl', 'wb') as f:
pickle.dump(embeddings, f)


for epoch in range(start_epoch, start_epoch+100):
train(epoch)
test(epoch, get_features=True)
Loading

0 comments on commit 633bf0f

Please sign in to comment.