forked from Samsung/ONE
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[onert] Introduce SoftMaxGrad function in cker (Samsung#11754)
This commit introduces SoftMaxGrad function in cker. This commit follows the derivative formula below. dsoftmax(xi)/dxj = softmax(xi) * (1 - softmax(xi)) (if i == j) -softmax(xi)*softmax(xj) (if i != j) ONE-DCO-1.0-Signed-off-by: Jiyoung Yun <[email protected]>
- Loading branch information
Showing
2 changed files
with
171 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
/* | ||
* Copyright (c) 2023 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#ifndef __NNFW_CKER_TRAIN_SOFTMAX_H__ | ||
#define __NNFW_CKER_TRAIN_SOFTMAX_H__ | ||
|
||
#include "cker/Shape.h" | ||
#include "cker/eigen/Utils.h" | ||
|
||
namespace nnfw | ||
{ | ||
namespace cker | ||
{ | ||
namespace train | ||
{ | ||
|
||
inline void SoftMaxGrad(const Shape &output_shape, const float *output_data, | ||
const Shape &incoming_shape, const float *incoming_data, | ||
const Shape &grad_shape, float *grad_data) | ||
{ | ||
// TODO Support 4dim softmax gradient | ||
assert(incoming_shape.DimensionsCount() == 2); | ||
MatchingFlatSize(output_shape, incoming_shape, grad_shape); | ||
|
||
const int batches = incoming_shape.Dims(0); | ||
const int width = incoming_shape.Dims(1); | ||
|
||
for (int b = 0; b < batches; ++b) | ||
{ | ||
int b_offset = b * width; | ||
for (int w1 = 0; w1 < width; ++w1) | ||
{ | ||
float sum = 0.0f; | ||
for (int w2 = 0; w2 < width; ++w2) | ||
{ | ||
float val; | ||
if (w1 == w2) | ||
{ | ||
val = output_data[b_offset + w2] * (1.f - output_data[b_offset + w2]); | ||
} | ||
else | ||
{ | ||
val = -output_data[b_offset + w2] * output_data[b_offset + w1]; | ||
} | ||
val *= incoming_data[b_offset + w2]; | ||
sum += val; | ||
} | ||
grad_data[b_offset + w1] = sum; | ||
} | ||
} | ||
} | ||
|
||
} // namespace train | ||
} // namespace cker | ||
} // namespace nnfw | ||
|
||
#endif // __NNFW_CKER_TRAIN_SOFTMAX_H__ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
/* | ||
* Copyright (c) 2023 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <cker/train/operation/SoftMax.h> | ||
|
||
#include <algorithm> | ||
#include <cmath> | ||
#include <gtest/gtest.h> | ||
#include <vector> | ||
|
||
// TODO Add tests that verifies result values | ||
TEST(CKer_Optimizer, SoftMaxGrad) | ||
{ | ||
// Unmatched shape | ||
{ | ||
// Dim 1x10 | ||
nnfw::cker::Shape shape{1, 10}; | ||
std::vector<float> softmax = {2.86195412e-12, 2.81944090e-13, 9.99998474e-01, 2.35859203e-07, | ||
2.90586864e-16, 2.09893085e-07, 1.68954109e-14, 1.21487884e-17, | ||
1.08008625e-06, 6.22994465e-18}; | ||
std::vector<float> incoming = {5.72000000e-13, 5.64000000e-14, 1.99999690e-01, 4.72000000e-08, | ||
5.81000000e-17, 4.20000000e-08, 3.38000000e-15, 2.43000000e-18, | ||
2.16000000e-07, -2.00000003e-01}; | ||
std::vector<float> expected = { | ||
-5.72389063e-13, -5.63886446e-14, 3.05167149e-07, -4.71716844e-08, -5.81171941e-17, | ||
-4.19784790e-08, -3.37907178e-15, -2.42975021e-18, -2.16016353e-07, -2.49197405e-18}; | ||
std::vector<float> grad = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | ||
|
||
nnfw::cker::train::SoftMaxGrad(shape, softmax.data(), shape, incoming.data(), shape, | ||
grad.data()); | ||
|
||
// TODO Use EXPECT_FLOAT_EQUAL | ||
for (size_t i = 0; i < grad.size(); ++i) | ||
EXPECT_NEAR(grad[i], expected[i], 0.01); | ||
} | ||
|
||
{ | ||
// Dim 2x10 | ||
nnfw::cker::Shape shape{2, 10}; | ||
std::vector<float> softmax = {6.80841727e-08, 2.31582313e-11, 5.66484244e-05, 4.50472506e-01, | ||
7.77810687e-13, 4.52301134e-04, 5.41837231e-01, 1.54489112e-07, | ||
7.18104184e-03, 4.84659012e-08, 1.51924287e-03, 7.48874448e-04, | ||
5.43233175e-02, 1.10145863e-01, 6.17917826e-10, 5.09775521e-04, | ||
8.27892599e-01, 3.03146885e-05, 4.25460567e-03, 5.75406837e-04}; | ||
std::vector<float> incoming = { | ||
-1.99999988e-01, 4.63000000e-12, 1.13000000e-05, 9.00945070e-02, 1.56000000e-13, | ||
9.05000000e-05, 1.08367443e-01, 3.09000000e-08, 1.43620800e-03, 9.69000000e-09, | ||
-1.99999988e-01, 4.63000000e-12, 1.13000000e-05, 9.00945070e-02, 1.56000000e-13, | ||
9.05000000e-05, 1.08367443e-01, 3.09000000e-08, 1.43620800e-03, 9.69000000e-09}; | ||
std::vector<float> expected = { | ||
-2.03784741e-08, -2.29991239e-12, -5.62528230e-06, -4.15265741e-03, -7.72466778e-14, | ||
-4.48784290e-05, 4.90605867e-03, -1.53427655e-08, -7.02857016e-04, -4.81329140e-09, | ||
-5.15774553e-04, -1.04579225e-04, -7.00410377e-03, -1.29717840e-02, -8.63838721e-11, | ||
-7.12137857e-05, 2.13432343e-02, -4.23775872e-06, -5.91166379e-04, -8.03746891e-05}; | ||
std::vector<float> grad = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | ||
|
||
nnfw::cker::train::SoftMaxGrad(shape, softmax.data(), shape, incoming.data(), shape, | ||
grad.data()); | ||
|
||
// TODO Use EXPECT_FLOAT_EQUAL | ||
for (size_t i = 0; i < grad.size(); ++i) | ||
EXPECT_NEAR(grad[i], expected[i], 0.01); | ||
} | ||
} | ||
|
||
TEST(CKer_Operation, neg_SoftMaxGrad) | ||
{ | ||
// Invalid expected value | ||
{ | ||
// Dim 1x10 | ||
nnfw::cker::Shape shape{1, 10}; | ||
std::vector<float> softmax = {7.96183250e-06, 1.73761995e-05, 9.35646649e-03, 5.53923216e-01, | ||
7.15798787e-13, 1.46669847e-02, 4.21307124e-01, 2.77163556e-07, | ||
4.36947878e-04, 2.83646234e-04}; | ||
std::vector<float> incoming = {1.5900000e-06, 3.4800000e-06, 1.8712930e-03, -8.9215361e-02, | ||
1.4300000e-13, 2.9333970e-03, 8.4261417e-02, 5.5400000e-08, | ||
8.7400000e-05, 5.6700000e-05}; | ||
std::vector<float> expected = {0.001, 0.002, 0.003, 0.001, 0.002, | ||
0.003, 0.001, 0.002, 0.003, 0.001}; | ||
std::vector<float> grad = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; | ||
|
||
nnfw::cker::train::SoftMaxGrad(shape, softmax.data(), shape, incoming.data(), shape, | ||
grad.data()); | ||
|
||
for (size_t i = 0; i < grad.size(); ++i) | ||
EXPECT_NE(grad[i], expected[i]); | ||
} | ||
} |