forked from fastai/course-v3
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
20 changed files
with
41,425 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,368 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Practical Deep Learning for Coders, v3" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Lesson4_tabular" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Tabular models\n", | ||
"# Tabular(表格)模型" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from fastai.tabular import *" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Tabular data should be in a Pandas `DataFrame`.\n", | ||
"\n", | ||
"Tabular数据是Pandas里的`DataFrame`。" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"path = untar_data(URLs.ADULT_SAMPLE)\n", | ||
"df = pd.read_csv(path/'adult.csv')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"dep_var = 'salary'\n", | ||
"cat_names = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race']\n", | ||
"cont_names = ['age', 'fnlwgt', 'education-num']\n", | ||
"procs = [FillMissing, Categorify, Normalize]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"test = TabularList.from_df(df.iloc[800:1000].copy(), path=path, cat_names=cat_names, cont_names=cont_names)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"data = (TabularList.from_df(df, path=path, cat_names=cat_names, cont_names=cont_names, procs=procs)\n", | ||
" .split_by_idx(list(range(800,1000)))\n", | ||
" .label_from_df(cols=dep_var)\n", | ||
" .add_test(test)\n", | ||
" .databunch())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<table> <col width='10%'> <col width='10%'> <col width='10%'> <col width='10%'> <col width='10%'> <col width='10%'> <col width='10%'> <col width='10%'> <col width='10%'> <col width='10%'> <col width='10%'> <tr>\n", | ||
" <th>workclass</th>\n", | ||
" <th>education</th>\n", | ||
" <th>marital-status</th>\n", | ||
" <th>occupation</th>\n", | ||
" <th>relationship</th>\n", | ||
" <th>race</th>\n", | ||
" <th>education-num_na</th>\n", | ||
" <th>age</th>\n", | ||
" <th>fnlwgt</th>\n", | ||
" <th>education-num</th>\n", | ||
" <th>target</th>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th> Private</th>\n", | ||
" <th> HS-grad</th>\n", | ||
" <th> Never-married</th>\n", | ||
" <th> Sales</th>\n", | ||
" <th> Not-in-family</th>\n", | ||
" <th> White</th>\n", | ||
" <th>False</th>\n", | ||
" <th>-1.2158</th>\n", | ||
" <th>1.1004</th>\n", | ||
" <th>-0.4224</th>\n", | ||
" <th><50k</th>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th> ?</th>\n", | ||
" <th> HS-grad</th>\n", | ||
" <th> Widowed</th>\n", | ||
" <th> ?</th>\n", | ||
" <th> Not-in-family</th>\n", | ||
" <th> White</th>\n", | ||
" <th>False</th>\n", | ||
" <th>1.8627</th>\n", | ||
" <th>0.0976</th>\n", | ||
" <th>-0.4224</th>\n", | ||
" <th><50k</th>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th> Self-emp-not-inc</th>\n", | ||
" <th> HS-grad</th>\n", | ||
" <th> Never-married</th>\n", | ||
" <th> Craft-repair</th>\n", | ||
" <th> Own-child</th>\n", | ||
" <th> Black</th>\n", | ||
" <th>False</th>\n", | ||
" <th>0.0303</th>\n", | ||
" <th>0.2092</th>\n", | ||
" <th>-0.4224</th>\n", | ||
" <th><50k</th>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th> Private</th>\n", | ||
" <th> HS-grad</th>\n", | ||
" <th> Married-civ-spouse</th>\n", | ||
" <th> Protective-serv</th>\n", | ||
" <th> Husband</th>\n", | ||
" <th> White</th>\n", | ||
" <th>False</th>\n", | ||
" <th>1.5695</th>\n", | ||
" <th>-0.5938</th>\n", | ||
" <th>-0.4224</th>\n", | ||
" <th><50k</th>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th> Private</th>\n", | ||
" <th> HS-grad</th>\n", | ||
" <th> Married-civ-spouse</th>\n", | ||
" <th> Handlers-cleaners</th>\n", | ||
" <th> Husband</th>\n", | ||
" <th> White</th>\n", | ||
" <th>False</th>\n", | ||
" <th>-0.9959</th>\n", | ||
" <th>-0.0318</th>\n", | ||
" <th>-0.4224</th>\n", | ||
" <th><50k</th>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th> Private</th>\n", | ||
" <th> 10th</th>\n", | ||
" <th> Married-civ-spouse</th>\n", | ||
" <th> Farming-fishing</th>\n", | ||
" <th> Wife</th>\n", | ||
" <th> White</th>\n", | ||
" <th>False</th>\n", | ||
" <th>-0.7027</th>\n", | ||
" <th>0.6071</th>\n", | ||
" <th>-1.5958</th>\n", | ||
" <th><50k</th>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th> Private</th>\n", | ||
" <th> HS-grad</th>\n", | ||
" <th> Married-civ-spouse</th>\n", | ||
" <th> Machine-op-inspct</th>\n", | ||
" <th> Husband</th>\n", | ||
" <th> White</th>\n", | ||
" <th>False</th>\n", | ||
" <th>0.1036</th>\n", | ||
" <th>-0.0968</th>\n", | ||
" <th>-0.4224</th>\n", | ||
" <th><50k</th>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th> Private</th>\n", | ||
" <th> Some-college</th>\n", | ||
" <th> Married-civ-spouse</th>\n", | ||
" <th> Exec-managerial</th>\n", | ||
" <th> Own-child</th>\n", | ||
" <th> White</th>\n", | ||
" <th>False</th>\n", | ||
" <th>-0.7760</th>\n", | ||
" <th>-0.6653</th>\n", | ||
" <th>-0.0312</th>\n", | ||
" <th>>=50k</th>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th> State-gov</th>\n", | ||
" <th> Some-college</th>\n", | ||
" <th> Never-married</th>\n", | ||
" <th> Tech-support</th>\n", | ||
" <th> Own-child</th>\n", | ||
" <th> White</th>\n", | ||
" <th>False</th>\n", | ||
" <th>-0.8493</th>\n", | ||
" <th>-1.4959</th>\n", | ||
" <th>-0.0312</th>\n", | ||
" <th><50k</th>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th> Private</th>\n", | ||
" <th> 11th</th>\n", | ||
" <th> Never-married</th>\n", | ||
" <th> Machine-op-inspct</th>\n", | ||
" <th> Not-in-family</th>\n", | ||
" <th> White</th>\n", | ||
" <th>False</th>\n", | ||
" <th>-1.0692</th>\n", | ||
" <th>-0.9516</th>\n", | ||
" <th>-1.2046</th>\n", | ||
" <th><50k</th>\n", | ||
" </tr>\n", | ||
"</table>\n" | ||
], | ||
"text/plain": [ | ||
"<IPython.core.display.HTML object>" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"data.show_batch(rows=10)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"learn = tabular_learner(data, layers=[200,100], metrics=accuracy)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"Total time: 00:03 <p><table style='width:300px; margin-bottom:10px'>\n", | ||
" <tr>\n", | ||
" <th>epoch</th>\n", | ||
" <th>train_loss</th>\n", | ||
" <th>valid_loss</th>\n", | ||
" <th>accuracy</th>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>1</th>\n", | ||
" <th>0.354604</th>\n", | ||
" <th>0.378520</th>\n", | ||
" <th>0.820000</th>\n", | ||
" </tr>\n", | ||
"</table>\n" | ||
], | ||
"text/plain": [ | ||
"<IPython.core.display.HTML object>" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"learn.fit(1, 1e-2)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Inference 预测" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"row = df.iloc[0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"(Category >=50k, tensor(1), tensor([0.4402, 0.5598]))" | ||
] | ||
}, | ||
"execution_count": null, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"learn.predict(row)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.