-
-
Notifications
You must be signed in to change notification settings - Fork 5.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Bugfix] Disable w16a16 2of4 sparse CompressedTensors24 (#12417)
Signed-off-by: Tyler Michael Smith <[email protected]> Co-authored-by: mgoin <[email protected]>
- Loading branch information
1 parent
9ddc352
commit aa2cd2c
Showing
6 changed files
with
263 additions
and
169 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,214 @@ | ||
"""Tests for sparse cutlass kernels | ||
Run `pytest tests/kernels/test_semi_structured.py`. | ||
""" | ||
from typing import Tuple, Type | ||
|
||
import pytest | ||
import torch | ||
import torch.nn.functional as F | ||
|
||
from vllm import _custom_ops as ops | ||
from vllm.model_executor.layers.quantization.utils.w8a8_utils import ( | ||
sparse_cutlass_supported) | ||
from vllm.platforms import current_platform | ||
|
||
from .utils import baseline_scaled_mm, to_fp8, to_int8 | ||
|
||
CUDA_DEVICES = [ | ||
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2) | ||
] | ||
|
||
capability = current_platform.get_device_capability() | ||
capability = capability[0] * 10 + capability[1] | ||
|
||
|
||
def to_bf16(tensor: torch.Tensor) -> torch.Tensor: | ||
return tensor.to(dtype=torch.bfloat16) | ||
|
||
|
||
def to_fp16(tensor: torch.Tensor) -> torch.Tensor: | ||
return tensor.to(dtype=torch.float16) | ||
|
||
|
||
def prune_to_2_4(tensor): | ||
# Reshape tensor to [N, 4] where N is number of groups of 4 | ||
original_shape = tensor.shape | ||
reshaped = tensor.reshape(-1, 4) | ||
|
||
# Get indices of top 2 absolute values in each group of 4 | ||
_, indices = torch.topk(torch.abs(reshaped), k=2, dim=1) | ||
|
||
# Create binary mask | ||
mask = torch.zeros_like(reshaped) | ||
mask.scatter_(dim=1, | ||
index=indices, | ||
src=torch.ones_like(indices, dtype=mask.dtype)) | ||
|
||
# Apply mask and reshape back | ||
pruned = reshaped * mask | ||
|
||
# Turn all -0.0 to 0.0 | ||
pruned[pruned == -0.0] = 0.0 | ||
|
||
return pruned.reshape(original_shape) | ||
|
||
|
||
def make_rand_sparse_tensors( | ||
dtype: torch.dtype, m: int, n: int, k: int | ||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | ||
a = torch.randn((m, k), device='cuda') * 5 | ||
b = torch.randn((n, k), device='cuda').t() * 5 | ||
|
||
b = prune_to_2_4(b.t()).t() | ||
|
||
if dtype == torch.int8: | ||
a, b = to_int8(a), to_int8(b) | ||
elif dtype == torch.float8_e4m3fn: | ||
a, b = to_fp8(a), to_fp8(b) | ||
elif dtype == torch.float16: | ||
a, b = to_fp16(a), to_fp16(b) | ||
elif dtype == torch.bfloat16: | ||
a, b = to_bf16(a), to_bf16(b) | ||
else: | ||
raise ValueError("unsupported dtype") | ||
|
||
b_compressed, e = ops.cutlass_sparse_compress(b.t()) | ||
|
||
# Compressed B, Metadata, Original A, B | ||
return b_compressed, e, a, b | ||
|
||
|
||
@pytest.mark.skipif(not sparse_cutlass_supported(), | ||
reason="Sparse CUTLASS is not supported on this GPU type.") | ||
# Test working with a subset of A and B for sparse matmul | ||
def test_cutlass_sparse_subset(): | ||
|
||
big_m = 1024 | ||
m, n, k = 512, 512, 512 | ||
|
||
# Create tensors | ||
b_comp, e, whole_a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, | ||
big_m, n, k) | ||
a = whole_a[0:m, 0:k] | ||
scale_a = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10 | ||
scale_b = torch.randn((1, 1), device="cuda", dtype=torch.float32) / 10 | ||
|
||
out = ops.cutlass_scaled_sparse_mm(a, | ||
b_comp, | ||
e, | ||
scale_a, | ||
scale_b, | ||
out_dtype=torch.bfloat16) | ||
baseline = baseline_scaled_mm(a, | ||
b, | ||
scale_a, | ||
scale_b, | ||
out_dtype=torch.bfloat16) | ||
|
||
torch.testing.assert_close(out, baseline, rtol=1e-1, atol=1e0) | ||
|
||
|
||
MNK_FACTORS = [ | ||
(1, 256, 128), | ||
(1, 16384, 1024), | ||
(1, 24576, 512), | ||
(16, 256, 512), | ||
(16, 16384, 128), | ||
(16, 24576, 4096), | ||
(32, 8192, 4096), | ||
(32, 16384, 4096), | ||
(33, 1024, 1024), | ||
(33, 8192, 128), | ||
(64, 2048, 512), | ||
(64, 16384, 1024), | ||
(100, 8192, 512), | ||
(128, 32768, 4096), | ||
(256, 4096, 4096), | ||
(512, 256, 1024), | ||
(512, 8192, 4096), | ||
(512, 16384, 128), | ||
(512, 24576, 128), | ||
] | ||
|
||
|
||
# Test working with a subset of A and B for sparse matmul | ||
@pytest.mark.skip(reason="2of4 sparse w16a16 CUTLASS produces bad output.") | ||
@pytest.mark.skipif(not sparse_cutlass_supported(), | ||
reason="Sparse CUTLASS is not supported on this GPU type.") | ||
@pytest.mark.parametrize("m, k, n", MNK_FACTORS) | ||
@pytest.mark.parametrize("dtype", [torch.bfloat16, torch.float16]) | ||
def test_cutlass_sparse_gemm(m: int, k: int, n: int, dtype: Type[torch.dtype]): | ||
|
||
# Create tensors | ||
b_comp, e, a, b = make_rand_sparse_tensors(dtype, m, n, k) | ||
scale_a = torch.ones((1, 1), device="cuda", dtype=torch.float32) | ||
scale_b = torch.ones((1, 1), device="cuda", dtype=torch.float32) | ||
|
||
out = ops.cutlass_scaled_sparse_mm(a, | ||
b_comp, | ||
e, | ||
scale_a, | ||
scale_b, | ||
out_dtype=dtype) | ||
baseline = F.linear(a, b.T) | ||
|
||
torch.testing.assert_close(out, baseline, rtol=1e-2, atol=1e-2) | ||
|
||
|
||
@pytest.mark.skipif(not sparse_cutlass_supported(), | ||
reason="Sparse CUTLASS is not supported on this GPU type.") | ||
@pytest.mark.parametrize("m, k, n", MNK_FACTORS) | ||
@pytest.mark.skipif(not current_platform.has_device_capability(89), | ||
reason="FP8 is not supported on this GPU type.") | ||
def test_cutlass_sparse_fp8_gemm(m: int, n: int, k: int): | ||
|
||
# Create tensors | ||
b_comp, e, a, b = make_rand_sparse_tensors(torch.float8_e4m3fn, m, n, k) | ||
scale_a = (torch.randn((1, 1), device="cuda", dtype=torch.float32)) | ||
scale_b = (torch.randn((1, 1), device="cuda", dtype=torch.float32)) | ||
|
||
out = ops.cutlass_scaled_sparse_mm(a, | ||
b_comp, | ||
e, | ||
scale_a, | ||
scale_b, | ||
out_dtype=torch.bfloat16) | ||
|
||
baseline = baseline_scaled_mm(a, | ||
b, | ||
scale_a, | ||
scale_b, | ||
out_dtype=torch.bfloat16) | ||
|
||
torch.testing.assert_close(out, baseline, rtol=1e0, atol=2e0) | ||
|
||
|
||
@pytest.mark.skipif(not sparse_cutlass_supported(), | ||
reason="Sparse CUTLASS is not supported on this GPU type.") | ||
@pytest.mark.parametrize("m,k,n", MNK_FACTORS) | ||
@pytest.mark.parametrize("per_act_token", [True, False]) | ||
@pytest.mark.parametrize("per_out_ch", [True, False]) | ||
@pytest.mark.parametrize("use_bias", [True, False]) | ||
def test_cutlass_sparse_int8_gemm(m: int, n: int, k: int, per_act_token: bool, | ||
per_out_ch: bool, use_bias: bool): | ||
|
||
# Create tensors | ||
b_comp, e, a, b = make_rand_sparse_tensors(torch.int8, m, n, k) | ||
scale_a = (torch.randn((1, 1), device="cuda", dtype=torch.float32)) | ||
scale_b = (torch.randn((1, 1), device="cuda", dtype=torch.float32)) | ||
|
||
out = ops.cutlass_scaled_sparse_mm(a, | ||
b_comp, | ||
e, | ||
scale_a, | ||
scale_b, | ||
out_dtype=torch.bfloat16) | ||
|
||
baseline = baseline_scaled_mm(a, | ||
b, | ||
scale_a, | ||
scale_b, | ||
out_dtype=torch.bfloat16) | ||
|
||
torch.testing.assert_close(out, baseline, rtol=1e0, atol=2e0) |
Oops, something went wrong.