Skip to content

Commit

Permalink
add datasets
Browse files Browse the repository at this point in the history
  • Loading branch information
vzantedeschi committed Feb 27, 2017
1 parent 8a8072f commit ef04eca
Show file tree
Hide file tree
Showing 14 changed files with 214,294 additions and 0 deletions.
270 changes: 270 additions & 0 deletions datasets/heart-statlog.txt

Large diffs are not rendered by default.

91,701 changes: 91,701 additions & 0 deletions datasets/ijcnn1.t

Large diffs are not rendered by default.

35,000 changes: 35,000 additions & 0 deletions datasets/ijcnn1.tr

Large diffs are not rendered by default.

351 changes: 351 additions & 0 deletions datasets/ionosphere.txt

Large diffs are not rendered by default.

18 changes: 18 additions & 0 deletions datasets/letter.py~
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
import sys

import numpy as np
import scipy.io as sio

output = sys.argv[1]+".sparse"

with open(sys.argv[1],"r") as input_file:

with open(output,"w") as output_file:

for line in input_file:
line = line.split(",")
l = ord(line[0]) - ord("A")
assert l >= 0
assert l <= 25
out_line = str(l) + " " + " ".join([str(i+1)+":"+str(el) for i,el in enumerate(line[1:]) if el!=0])
output_file.write(out_line)
345 changes: 345 additions & 0 deletions datasets/liver.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,345 @@
85 92 45 27 31 0.0 1
85 64 59 32 23 0.0 2
86 54 33 16 54 0.0 2
91 78 34 24 36 0.0 2
87 70 12 28 10 0.0 2
98 55 13 17 17 0.0 2
88 62 20 17 9 0.5 1
88 67 21 11 11 0.5 1
92 54 22 20 7 0.5 1
90 60 25 19 5 0.5 1
89 52 13 24 15 0.5 1
82 62 17 17 15 0.5 1
90 64 61 32 13 0.5 1
86 77 25 19 18 0.5 1
96 67 29 20 11 0.5 1
91 78 20 31 18 0.5 1
89 67 23 16 10 0.5 1
89 79 17 17 16 0.5 1
91 107 20 20 56 0.5 1
94 116 11 33 11 0.5 1
92 59 35 13 19 0.5 1
93 23 35 20 20 0.5 1
90 60 23 27 5 0.5 1
96 68 18 19 19 0.5 1
84 80 47 33 97 0.5 1
92 70 24 13 26 0.5 1
90 47 28 15 18 0.5 1
88 66 20 21 10 0.5 1
91 102 17 13 19 0.5 1
87 41 31 19 16 0.5 1
86 79 28 16 17 0.5 1
91 57 31 23 42 0.5 1
93 77 32 18 29 0.5 1
88 96 28 21 40 0.5 1
94 65 22 18 11 0.5 1
91 72 155 68 82 0.5 2
85 54 47 33 22 0.5 2
79 39 14 19 9 0.5 2
85 85 25 26 30 0.5 2
89 63 24 20 38 0.5 2
84 92 68 37 44 0.5 2
89 68 26 39 42 0.5 2
89 101 18 25 13 0.5 2
86 84 18 14 16 0.5 2
85 65 25 14 18 0.5 2
88 61 19 21 13 0.5 2
92 56 14 16 10 0.5 2
95 50 29 25 50 0.5 2
91 75 24 22 11 0.5 2
83 40 29 25 38 0.5 2
89 74 19 23 16 0.5 2
85 64 24 22 11 0.5 2
92 57 64 36 90 0.5 2
94 48 11 23 43 0.5 2
87 52 21 19 30 0.5 2
85 65 23 29 15 0.5 2
84 82 21 21 19 0.5 2
88 49 20 22 19 0.5 2
96 67 26 26 36 0.5 2
90 63 24 24 24 0.5 2
90 45 33 34 27 0.5 2
90 72 14 15 18 0.5 2
91 55 4 8 13 0.5 2
91 52 15 22 11 0.5 2
87 71 32 19 27 1.0 1
89 77 26 20 19 1.0 1
89 67 5 17 14 1.0 2
85 51 26 24 23 1.0 2
103 75 19 30 13 1.0 2
90 63 16 21 14 1.0 2
90 63 29 23 57 2.0 1
90 67 35 19 35 2.0 1
87 66 27 22 9 2.0 1
90 73 34 21 22 2.0 1
86 54 20 21 16 2.0 1
90 80 19 14 42 2.0 1
87 90 43 28 156 2.0 2
96 72 28 19 30 2.0 2
91 55 9 25 16 2.0 2
95 78 27 25 30 2.0 2
92 101 34 30 64 2.0 2
89 51 41 22 48 2.0 2
91 99 42 33 16 2.0 2
94 58 21 18 26 2.0 2
92 60 30 27 297 2.0 2
94 58 21 18 26 2.0 2
88 47 33 26 29 2.0 2
92 65 17 25 9 2.0 2
92 79 22 20 11 3.0 1
84 83 20 25 7 3.0 1
88 68 27 21 26 3.0 1
86 48 20 20 6 3.0 1
99 69 45 32 30 3.0 1
88 66 23 12 15 3.0 1
89 62 42 30 20 3.0 1
90 51 23 17 27 3.0 1
81 61 32 37 53 3.0 2
89 89 23 18 104 3.0 2
89 65 26 18 36 3.0 2
92 75 26 26 24 3.0 2
85 59 25 20 25 3.0 2
92 61 18 13 81 3.0 2
89 63 22 27 10 4.0 1
90 84 18 23 13 4.0 1
88 95 25 19 14 4.0 1
89 35 27 29 17 4.0 1
91 80 37 23 27 4.0 1
91 109 33 15 18 4.0 1
91 65 17 5 7 4.0 1
88 107 29 20 50 4.0 2
87 76 22 55 9 4.0 2
87 86 28 23 21 4.0 2
87 42 26 23 17 4.0 2
88 80 24 25 17 4.0 2
90 96 34 49 169 4.0 2
86 67 11 15 8 4.0 2
92 40 19 20 21 4.0 2
85 60 17 21 14 4.0 2
89 90 15 17 25 4.0 2
91 57 15 16 16 4.0 2
96 55 48 39 42 4.0 2
79 101 17 27 23 4.0 2
90 134 14 20 14 4.0 2
89 76 14 21 24 4.0 2
88 93 29 27 31 4.0 2
90 67 10 16 16 4.0 2
92 73 24 21 48 4.0 2
91 55 28 28 82 4.0 2
83 45 19 21 13 4.0 2
90 74 19 14 22 4.0 2
92 66 21 16 33 5.0 1
93 63 26 18 18 5.0 1
86 78 47 39 107 5.0 2
97 44 113 45 150 5.0 2
87 59 15 19 12 5.0 2
86 44 21 11 15 5.0 2
87 64 16 20 24 5.0 2
92 57 21 23 22 5.0 2
90 70 25 23 112 5.0 2
99 59 17 19 11 5.0 2
92 80 10 26 20 6.0 1
95 60 26 22 28 6.0 1
91 63 25 26 15 6.0 1
92 62 37 21 36 6.0 1
95 50 13 14 15 6.0 1
90 76 37 19 50 6.0 1
96 70 70 26 36 6.0 1
95 62 64 42 76 6.0 1
92 62 20 23 20 6.0 1
91 63 25 26 15 6.0 1
82 56 67 38 92 6.0 2
92 82 27 24 37 6.0 2
90 63 12 26 21 6.0 2
88 37 9 15 16 6.0 2
100 60 29 23 76 6.0 2
98 43 35 23 69 6.0 2
91 74 87 50 67 6.0 2
92 87 57 25 44 6.0 2
93 99 36 34 48 6.0 2
90 72 17 19 19 6.0 2
97 93 21 20 68 6.0 2
93 50 18 25 17 6.0 2
90 57 20 26 33 6.0 2
92 76 31 28 41 6.0 2
88 55 19 17 14 6.0 2
89 63 24 29 29 6.0 2
92 79 70 32 84 7.0 1
92 93 58 35 120 7.0 1
93 84 58 47 62 7.0 2
97 71 29 22 52 8.0 1
84 99 33 19 26 8.0 1
96 44 42 23 73 8.0 1
90 62 22 21 21 8.0 1
92 94 18 17 6 8.0 1
90 67 77 39 114 8.0 1
97 71 29 22 52 8.0 1
91 69 25 25 66 8.0 2
93 59 17 20 14 8.0 2
92 95 85 48 200 8.0 2
90 50 26 22 53 8.0 2
91 62 59 47 60 8.0 2
92 93 22 28 123 9.0 1
92 77 86 41 31 10.0 1
86 66 22 24 26 10.0 2
98 57 31 34 73 10.0 2
95 80 50 64 55 10.0 2
92 108 53 33 94 12.0 2
97 92 22 28 49 12.0 2
93 77 39 37 108 16.0 1
94 83 81 34 201 20.0 1
87 75 25 21 14 0.0 1
88 56 23 18 12 0.0 1
84 97 41 20 32 0.0 2
94 91 27 20 15 0.5 1
97 62 17 13 5 0.5 1
92 85 25 20 12 0.5 1
82 48 27 15 12 0.5 1
88 74 31 25 15 0.5 1
95 77 30 14 21 0.5 1
88 94 26 18 8 0.5 1
91 70 19 19 22 0.5 1
83 54 27 15 12 0.5 1
91 105 40 26 56 0.5 1
86 79 37 28 14 0.5 1
91 96 35 22 135 0.5 1
89 82 23 14 35 0.5 1
90 73 24 23 11 0.5 1
90 87 19 25 19 0.5 1
89 82 33 32 18 0.5 1
85 79 17 8 9 0.5 1
85 119 30 26 17 0.5 1
78 69 24 18 31 0.5 1
88 107 34 21 27 0.5 1
89 115 17 27 7 0.5 1
92 67 23 15 12 0.5 1
89 101 27 34 14 0.5 1
91 84 11 12 10 0.5 1
94 101 41 20 53 0.5 2
88 46 29 22 18 0.5 2
88 122 35 29 42 0.5 2
84 88 28 25 35 0.5 2
90 79 18 15 24 0.5 2
87 69 22 26 11 0.5 2
65 63 19 20 14 0.5 2
90 64 12 17 14 0.5 2
85 58 18 24 16 0.5 2
88 81 41 27 36 0.5 2
86 78 52 29 62 0.5 2
82 74 38 28 48 0.5 2
86 58 36 27 59 0.5 2
94 56 30 18 27 0.5 2
87 57 30 30 22 0.5 2
98 74 148 75 159 0.5 2
94 75 20 25 38 0.5 2
83 68 17 20 71 0.5 2
93 56 25 21 33 0.5 2
101 65 18 21 22 0.5 2
92 65 25 20 31 0.5 2
92 58 14 16 13 0.5 2
86 58 16 23 23 0.5 2
85 62 15 13 22 0.5 2
86 57 13 20 13 0.5 2
86 54 26 30 13 0.5 2
81 41 33 27 34 1.0 1
91 67 32 26 13 1.0 1
91 80 21 19 14 1.0 1
92 60 23 15 19 1.0 1
91 60 32 14 8 1.0 1
93 65 28 22 10 1.0 1
90 63 45 24 85 1.0 2
87 92 21 22 37 1.0 2
83 78 31 19 115 1.0 2
95 62 24 23 14 1.0 2
93 59 41 30 48 1.0 2
84 82 43 32 38 2.0 1
87 71 33 20 22 2.0 1
86 44 24 15 18 2.0 1
86 66 28 24 21 2.0 1
88 58 31 17 17 2.0 1
90 61 28 29 31 2.0 1
88 69 70 24 64 2.0 1
93 87 18 17 26 2.0 1
98 58 33 21 28 2.0 1
91 44 18 18 23 2.0 2
87 75 37 19 70 2.0 2
94 91 30 26 25 2.0 2
88 85 14 15 10 2.0 2
89 109 26 25 27 2.0 2
87 59 37 27 34 2.0 2
93 58 20 23 18 2.0 2
88 57 9 15 16 2.0 2
94 65 38 27 17 3.0 1
91 71 12 22 11 3.0 1
90 55 20 20 16 3.0 1
91 64 21 17 26 3.0 2
88 47 35 26 33 3.0 2
82 72 31 20 84 3.0 2
85 58 83 49 51 3.0 2
91 54 25 22 35 4.0 1
98 50 27 25 53 4.0 2
86 62 29 21 26 4.0 2
89 48 32 22 14 4.0 2
82 68 20 22 9 4.0 2
83 70 17 19 23 4.0 2
96 70 21 26 21 4.0 2
94 117 77 56 52 4.0 2
93 45 11 14 21 4.0 2
93 49 27 21 29 4.0 2
84 73 46 32 39 4.0 2
91 63 17 17 46 4.0 2
90 57 31 18 37 4.0 2
87 45 19 13 16 4.0 2
91 68 14 20 19 4.0 2
86 55 29 35 108 4.0 2
91 86 52 47 52 4.0 2
88 46 15 33 55 4.0 2
85 52 22 23 34 4.0 2
89 72 33 27 55 4.0 2
95 59 23 18 19 4.0 2
94 43 154 82 121 4.0 2
96 56 38 26 23 5.0 2
90 52 10 17 12 5.0 2
94 45 20 16 12 5.0 2
99 42 14 21 49 5.0 2
93 102 47 23 37 5.0 2
94 71 25 26 31 5.0 2
92 73 33 34 115 5.0 2
87 54 41 29 23 6.0 1
92 67 15 14 14 6.0 1
98 101 31 26 32 6.0 1
92 53 51 33 92 6.0 1
97 94 43 43 82 6.0 1
93 43 11 16 54 6.0 1
93 68 24 18 19 6.0 1
95 36 38 19 15 6.0 1
99 86 58 42 203 6.0 1
98 66 103 57 114 6.0 1
92 80 10 26 20 6.0 1
96 74 27 25 43 6.0 2
95 93 21 27 47 6.0 2
86 109 16 22 28 6.0 2
91 46 30 24 39 7.0 2
102 82 34 78 203 7.0 2
85 50 12 18 14 7.0 2
91 57 33 23 12 8.0 1
91 52 76 32 24 8.0 1
93 70 46 30 33 8.0 1
87 55 36 19 25 8.0 1
98 123 28 24 31 8.0 1
82 55 18 23 44 8.0 2
95 73 20 25 225 8.0 2
97 80 17 20 53 8.0 2
100 83 25 24 28 8.0 2
88 91 56 35 126 9.0 2
91 138 45 21 48 10.0 1
92 41 37 22 37 10.0 1
86 123 20 25 23 10.0 2
91 93 35 34 37 10.0 2
87 87 15 23 11 10.0 2
87 56 52 43 55 10.0 2
99 75 26 24 41 12.0 1
96 69 53 43 203 12.0 2
98 77 55 35 89 15.0 1
91 68 27 26 14 16.0 1
98 99 57 45 65 20.0 1
13 changes: 13 additions & 0 deletions datasets/mnist.py~
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
import sys

import numpy as np

output = sys.argv[1]+".sparse"
dense_matrix = np.loadtxt(sys.argv[1],delimiter=",")

with open(output,"w") as output_file:

for line in dense_matrix:

out_line = str(line[0]) + " " + " ".join([str(i)+":"+str(el) for i,el in enumerate(line[1:]) if el!=0])
output_file.write(out_line+' 784:0'+'\n')
Loading

0 comments on commit ef04eca

Please sign in to comment.