-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest4rgb.py
83 lines (73 loc) · 3.08 KB
/
test4rgb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import io
import sys
import numpy as np
import tensorflow as tf
slim = tf.contrib.slim
import tensorlayer as tl
import inputs as data
import c3d_clstm as net
import time
from datetime import datetime
import threading
seq_len = 32
batch_size = 1
num_classes = 249
dataset_name = 'isogr'
curtime = '%s' % datetime.now()
d = curtime.split(' ')[0]
t = curtime.split(' ')[1]
strtime = '%s%s%s-%s%s%s' % (d.split('-')[0], d.split('-')[1], d.split('-')[2],
t.split(':')[0], t.split(':')[1], t.split(':')[2])
x = tf.placeholder(tf.float32, [batch_size, seq_len, 112, 112, 3], name='x')
y = tf.placeholder(tf.int32, shape=[batch_size, ], name='y')
sess = tf.InteractiveSession()
networks = net.c3d_clstm(x, num_classes, False, False)
network_pred = tf.nn.softmax(networks.outputs)
network_y_op = tf.argmax(tf.nn.softmax(networks.outputs), 1)
network_accu = tf.reduce_mean(tf.cast(tf.equal(tf.cast(network_y_op, tf.int32), y), tf.float32))
sess.run(tf.initialize_all_variables())
# RGB
testing_datalist = 'image4LSTM/test/test_rgb_fullbody.txt'
X_test, y_test = data.load_video_list(testing_datalist)
X_teidx = np.asarray(np.arange(0, len(y_test)), dtype=np.int32)
y_test = np.asarray(y_test, dtype=np.int32)
rgb_prediction = np.zeros((len(y_test), num_classes), dtype=np.float32)
load_params = tl.files.load_npz(name='Rgb_fullbody_model.npz')
tl.files.assign_params(sess, load_params, networks)
# networks.print_params(True)
average_accuracy = 0.0
test_iterations = 0
print '%s: rgb testing' % datetime.now()
for X_indices, y_label_t in tl.iterate.minibatches(X_teidx,
y_test,
batch_size,
shuffle=False):
# Read data for each batch
image_path = []
image_fcnt = []
image_olen = []
is_training = []
for data_a in range(batch_size):
X_index_a = X_indices[data_a]
key_str = '%06d' % X_index_a
image_path.append(X_test[key_str]['videopath'])
image_fcnt.append(X_test[key_str]['framecnt'])
image_olen.append(seq_len)
is_training.append(False) # Testing
image_info = zip(image_path, image_fcnt, image_olen, is_training)
X_data_t = tl.prepro.threading_data([_ for _ in image_info],
data.prepare_isogr_rgb_data)
feed_dict = {x: X_data_t, y: y_label_t}
dp_dict = tl.utils.dict_to_one(networks.all_drop)
feed_dict.update(dp_dict)
predict_value, accu_value = sess.run([network_pred, network_accu], feed_dict=feed_dict)
print predict_value
np.save('test_rgb_fullbody_predict/' + image_path[0][-7:] + '.npy',predict_value)
rgb_prediction[test_iterations * batch_size:(test_iterations + 1) * batch_size, :] = predict_value
average_accuracy = average_accuracy + accu_value
test_iterations = test_iterations + 1
average_accuracy = average_accuracy / test_iterations
format_str = ('%s: rgb average_accuracy = %.6f')
print (format_str % (datetime.now(), average_accuracy))