- 特征提取:如何有效地从大量的三维数据中提取有用的特征?
- 模型设计和训练:如何设计和训练深度学习模型以实现精确的三维物体检测?
- 数据处理:如何处理不同的视觉传感器(如激光雷达、立体相机等)获取的数据?
- 旋转不变性:如何处理三维数据的旋转不变性问题?
- 实时性:如何提高三维视觉检测的实时性,以满足工业应用的需求?
- 大规模和复杂场景:如何处理大规模、复杂场景下的三维视觉检测问题?
- 少量或无标注数据的训练:如何利用少量标注数据或无标注数据进行有效的模型训练?
conda create -n cloud_lesson
conda activate cloud_lesson
conda install python=3.11
pip install open3d
pip install pyntcloud
pip install jupyterlab
jupyter lab
pip install scikit-learn
pip install seaborn
pip install opencv-python
pip install tensorflow
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scipy
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-geometric
数据集 modelnet40,文件格式是txt kitti,文件格式是bin文件
Engel, Nico, Vasileios Belagiannis, and Klaus Dietmayer. 2021. “Point Transformer.” IEEE Access: Practical Innovations, Open Solutions 9: 134826–40. https://doi.org/10.1109/ACCESS.2021.3116304.