Skip to content

wangwei83/X-23d-Y-ai-Z-detection

Repository files navigation

工业三维视觉检测

思考研究意义

聚焦视觉检测

凝练科学问题

  1. 特征提取:如何有效地从大量的三维数据中提取有用的特征?
  2. 模型设计和训练:如何设计和训练深度学习模型以实现精确的三维物体检测?
  3. 数据处理:如何处理不同的视觉传感器(如激光雷达、立体相机等)获取的数据?
  4. 旋转不变性:如何处理三维数据的旋转不变性问题?
  5. 实时性:如何提高三维视觉检测的实时性,以满足工业应用的需求?
  6. 大规模和复杂场景:如何处理大规模、复杂场景下的三维视觉检测问题?
  7. 少量或无标注数据的训练:如何利用少量标注数据或无标注数据进行有效的模型训练?

实现技术路线

持续技术变现

基础理论知识


安装步骤

conda create -n cloud_lesson
conda activate cloud_lesson
conda install python=3.11
pip install open3d
pip install pyntcloud
pip install jupyterlab
jupyter lab
pip install scikit-learn
pip install seaborn
pip install opencv-python
pip install tensorflow
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scipy
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-geometric

数据集 modelnet40,文件格式是txt kitti,文件格式是bin文件

Engel, Nico, Vasileios Belagiannis, and Klaus Dietmayer. 2021. “Point Transformer.” IEEE Access: Practical Innovations, Open Solutions 9: 134826–40. https://doi.org/10.1109/ACCESS.2021.3116304.

https://github.com/engelnico/point-transformer

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •