本项目使用dlib人脸特征识别,在原来的68点的基础上扩展到200点
- 200个特征点,覆盖全脸、眼部、眉毛、嘴及嘴唇、鼻子包含轮廓及鼻梁骨架
- 下载illinois的图片
- 安装必要的插件,如dlib, opencv
- 运行python脚本test_shape_predictor.py
在根目录已经提供了一个用如下参数训练出来的预测模型,也可以自己通过train_shape_predictor.py来训练
options.nu = 0.05
options.tree_depth = 2
options.be_verbose = True
#face detect landmarks 200 points
base on dlib's face landmarks detecting from 68 exntend to 200 points
Actually, in this project already provide predictor model trained with
options.nu = 0.05
options.tree_depth = 2
options.be_verbose = True
plese follow below steps:
- download images at Helen dataset from illinois
- install required plugins, like dlib, opencv
- run the python script test_shape_predictor.py
Actually, in this project already provide predictor model trained by train_shape_predictor.py with
options.nu = 0.05
options.tree_depth = 2
options.be_verbose = True